Log in

Mechanisms of cardioembolic stroke

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Cardiac embolism is often involved as a mechanism for embolic stroke, and may be implicated in many strokes that have traditionally been considered of unknown origin (cryptogenic strokes). In recent years, significant advancements have been made in understanding and reducing the risk of stroke from long-known cardioembolic sources (atrial fibrillation, intracardiac thrombus or tumor, infective endocarditis). Also, improved cardiac imaging, especially transesophageal echocardiography, has allowed the identification of newer embolic sources of stroke (aortic atheromas, patent foramen ovale, atrial septal aneurysm). This article reviews the current understanding of cardiac embolism as a mechanism for stroke, and the preventive options that are currently adopted to decrease the stroke risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Flegel KM, Shipley MJ, Rose G: Risk of stroke in non-rheumatic atrial fibrillation. Lancet 1987, 1:526–529.

    Article  PubMed  CAS  Google Scholar 

  2. Wolf PA, Abbott RD, Kannel WB: Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 1991, 22:983–988.

    PubMed  CAS  Google Scholar 

  3. Krahn AD, Manfreda J, Tate RB, et al.: The natural history of atrial fibrillation: incidence, risk factors and prognosis in the Manitoba Follow-Up Study. Am J Med 1995, 98:476–484.

    Article  PubMed  CAS  Google Scholar 

  4. Wolf PA, Dawber TR, Thomas HE Jr, Kannel WB: Epidemiologic assessment of atrial fibrillation and risk of stroke: the Framingham Study. Neurology 1978, 28:973–977.

    PubMed  CAS  Google Scholar 

  5. Hart RG, Halperin JL. Atrial fibrillation and thromboembolism: a decade of progress in stroke prevention. Ann Intern Med 1999, 131:688–695.

    PubMed  CAS  Google Scholar 

  6. Laupacis A, Boysen G, Connolly S, et al.: Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation: analysis of pooled data from five randomized controlled trials. Arch Intern Med 1994, 154:1449–1457.

    Article  Google Scholar 

  7. Hart RG, Pearce LA, Rothbart RM, et al., for the Stroke Prevention in Atrial Fibrillation Investigators: Stroke with intermittent atrial fibrillation: incidence and predictors during aspirin therapy. J Am Coll Cardiol 2000, 35:183–187.

    Article  PubMed  CAS  Google Scholar 

  8. Stroke Prevention in Atrial Fibrillation Investigators: Adjusteddose warfarin versus low-intensity, fixed-dose warfarin plus aspirin for high-risk patients with atrial fibrillation: Stroke Prevention in Atrial Fibrillation III randomised clinical trial. Lancet 1996, 348:633–638.

    Article  Google Scholar 

  9. ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation. J Am Coll Cardiol 2001, 38:1231–1265. Extensive review of the state of the art in the management of atrial fibrillation, and guidelines for the treatment of atrial fibrillation and its sequelae.

  10. Mooe T, Eriksson P, Stegmayr B: Ischemic stroke after acute myocardial infarction. A population-based study. Stroke 1997, 28:762–767.

    PubMed  CAS  Google Scholar 

  11. Bodenheimer MM, Sauer D, Shareef B, et al.: Relation between myocardial infarct location and stroke. J Am Coll Cardiol 1994, 24:61–66.

    Article  PubMed  CAS  Google Scholar 

  12. Fifth ACCP Consensus Conference on Antithrombotic Therapy (1998): Summary Recommendations. Chest 1998, 114(suppl):439S-769S. Recommendations for antithrombotic therapy in a variety of diseases, both from therapeutic and preventive standpoints.

    Google Scholar 

  13. Azar AJ, Koudstaal PJ, Wintzen AR, et al.: Risk of stroke during long-term anticoagulant therapy in patients after myocardial infarction. Ann Neurol 1996, 39:301–307.

    Article  PubMed  CAS  Google Scholar 

  14. Loh E, Sutton MS, Wun CC, et al.: Ventricular dysfunction and the risk of stroke after myocardial infarction. N Engl J Med 1997, 336:1916–1917.

    Article  Google Scholar 

  15. Dries DL, Rosenberg Y, Waclawiw M, Domanski M: Ejection fraction and risk of thromboembolic events in patients with systolic dysfunction and sinus rhythm: evidence for gender differences in the studies of left ventricular dysfunction trials. J Am Coll Cardiol 1997, 29:1074–1080.

    Article  PubMed  CAS  Google Scholar 

  16. Koniaris LS, Goldhaber SZ: Anticoagulation in dilated cardiomyopathy. J Am Coll Cardiol 1998, 31:745–748. Review of published data on dilated cardiomyopathy and embolic risk, and efficacy of oral anticoagulation and antiplatelet treatment to decrease the risk.

    Article  PubMed  CAS  Google Scholar 

  17. Cabell CH, Pond KK, Peterson GE, et al.: The risk of stroke and death in patients with aortic and mitral valve endocarditis. Am Heart J 2001, 142:75–80.

    Article  PubMed  CAS  Google Scholar 

  18. Sanfilippo AJ, Picard MH, Newell JB, et al.: Echocardiographic assessment of patients with infectious endocarditis: prediction of risk for complications. J Am Coll Cardiol 1991, 18:1191–1199.

    Article  PubMed  CAS  Google Scholar 

  19. Di Salvo G, Habib G, Pergola V, et al.: Echocardiography predicts embolic events in infective endocarditis. J Am Coll Cardiol 2001, 15:1069–1076. In 178 patients undergoing TEE for endocarditis, there was a 37% overall incidence of embolic events. Predictors of embolic events were vegetation size (> 10 mm, 60% embolic rate) and mobility (62% embolic rate). Embolic events rate for large (> 15 mm) mobile vegetations was 83%.

    Article  Google Scholar 

  20. Reynan K: Cardiac myxomas. N Engl J Med 1995, 333:1610–1617.

    Article  Google Scholar 

  21. Sastre-Garriga J, Molina C, Montaner J, et al.: Mitral papillary fibroelastoma as a cause of cardiogenic embolic stroke: report of two cases and review of the literature. Eur J Neurol 2000, 7:449–453.

    Article  PubMed  CAS  Google Scholar 

  22. Stoddard MF, Dawkins PR, Prince CR, Ammash NM; Left atrial appendage thrombus is not uncommon in patients with acute atrial fibrillation and a recent embolic event: a transesophageal echocardiographic study. J Am Coll Cardiol 1995, 25:452–459.

    Article  PubMed  CAS  Google Scholar 

  23. Manning WJ, Silverman DI, Waksmonski CA, et al.: Prevalence of residual left atrial thrombi among patients with acute thromboembolism and newly recognized atrial fibrillation. Arch Intern Med 1995, 155:2193–2198.

    Article  PubMed  CAS  Google Scholar 

  24. The Stroke Prevention in Atrial Fibrillation Investigators Committee on Echocardiography: Transesophageal echocardiographic correlates of thromboembolism in high-risk patients with nonvalvular atrial fibrillation. Ann Intern Med 1998, 128:639–647. Aortic plaques, left atrial appendage thrombus, and spontaneous echo-contrast are all associated with increased risk of thromboembolism in patients with atrial fibrillation. Warfarin treatment decreases the incidence of events associated with spontaneous echo-contrast and complex aortic plaques.

    Google Scholar 

  25. Jaber WA, Prior DL, Thamilarasan M, et al.: Efficacy of anticoagulation in resolving left atrial and left atrial appendage thrombi: a transesophageal echocardiographic study. Am Heart J 2000, 140:150–156.

    Article  PubMed  CAS  Google Scholar 

  26. Klein AL, Grimm RA, Murray RD, et al., for the Assessment of Cardioversion Using Transesophageal Echocardiography Investigators: Use of transesophageal echocardiography to guide cardioversion in patients with atrial fibrillation. N Engl J Med 2001, 344:1411–1420. After transesophageal echocardiography excludes the presence of left atrial appendage thrombus, cardioversion for atrial fibrillation can be safely performed without prior 3 weeks of anticoagulation. Embolic events rate is similar (0.8% vs 0.5%), hemorrhagic events are less frequent (2.9% vs 5.5%, P — 0.03).

    Article  PubMed  CAS  Google Scholar 

  27. Leung DY, Black IW, Cranney GB, et al.: Prognostic implications of left atrial spontaneous contrast in nonvalvular atrial fibrillation. J Am Coll Cardiol 1994, 24:755–762.

    Article  PubMed  CAS  Google Scholar 

  28. Sadanandan S, Sherrid MV: Clinical and echocardiographic characteristics of left atrial spontaneous echo contrast in sinus rhythm. J Am Coll Cardiol 2000, 35:1932–1938.

    Article  PubMed  CAS  Google Scholar 

  29. Amarenco P, Duyckaerts C, Tzourio C, et al.: The frequency of ulcerated plaques in the aortic arch in patients with stroke. N Engl J Med 1992, 326:221–225.

    Article  PubMed  CAS  Google Scholar 

  30. Amarenco P, Cohen A, Tzourio C, et al.: Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Eng J Med 1994, 331:1474–1479.

    Article  CAS  Google Scholar 

  31. Di Tullio MR, Sacco RL, Gersony D, et al.: Aortic atheromas and acute ischemic stroke: a transesophageal echocardiographic study in an ethnically mixed population. Neurology 1996, 46:1560–1566.

    PubMed  Google Scholar 

  32. Tunick PA, Rosenzweig BP, Katz ES, et al.: High risk for vascular events in patients with protruding aortic atheromas: a prospective study. J Am Coll Cardiol 1994, 23:1085–1090.

    Article  PubMed  CAS  Google Scholar 

  33. Di Tullio MR, Sacco RL, Savoia MT, et al.: Aortic atheroma morphology and the risk of ischemic stroke in a multiethnic population. Am Heart J 2000, 139:329–336.

    Article  PubMed  Google Scholar 

  34. Ferrari E, Vidal R, Chevalier T, Baudouy M: Atherosclerosis of the thoracic aorta and aortic debris as a marker of poor prognosis: benefit of oral anticoagulants. J Am Coll Cardiol 1999, 33:1317–1322. Oral anticoagulation with warfarin, besides reducing mortality and embolic events rate in patients with mobile aortic plaques, also reduces the risk of thromboembolic events in patients with large (> 4 mm) but noncomplex plaques (antiplatelet agents vs warfarin: 5.9, 95% CI 1.4-15)

    Article  PubMed  CAS  Google Scholar 

  35. Stern A, Tunick PA, Culliford AT, et al.: Protruding aortic arch atheromas: risk of stroke during heart surgery with and without aortic arch endarterectomy. Am Heart J 1999, 138:746–752. In 268 patients with large or mobile plaques in the aortic arch undergoing heart surgery, the incidence of intraoperative stroke was high (15.3%). Age (OR 3.9, P = 0.01) and arch endarterectomy (OR 3.6, P = 0.001) were independent predictors of intraoperative stroke.

    Article  PubMed  CAS  Google Scholar 

  36. Lechat P, Mas JL, Lascault G, et al.: Prevalence of patent foramen ovale in patients with stroke. N Engl J Med 1988, 318:1148–1152.

    Article  PubMed  CAS  Google Scholar 

  37. Di Tullio M, Sacco RL, Gopal A, et al.: Patent foramen ovale as a risk factor for ischemic stroke. Ann Intern Med 1992, 117:461–465.

    PubMed  Google Scholar 

  38. Homma S, Di Tullio MR, Sacco RL, et al.: Characteristics of patent foramen ovale associated with cryptogenic stroke: a biplane transesophageal echocardiographic study. Stroke 1994, 25:582–586.

    PubMed  CAS  Google Scholar 

  39. Steiner MM, Di Tullio MR, Rundek T, et al.: Patent foramen ovale size and embolic brain imaging findings among patients with ischemic stroke. Stroke 1998, 29:944–948.

    PubMed  CAS  Google Scholar 

  40. Mas JL, Zuber M, for the French study group on patent foramen ovale and atrial septal aneurysm: Recurrent cerebral events in patients with patent foramen ovale or atrial septal aneurysm, or both, and cryptogenic stroke. Am Heart J 1995, 140:1083–1088.

    Article  Google Scholar 

  41. Cujec B, Mainra R, Johnson DH: Prevention of recurrent cerebral ischemic events in patients with patent foramen ovale and cryptogenic strokes or transient ischemic attacks. Can J Cardiol 1999, 15:57–64.

    PubMed  CAS  Google Scholar 

  42. Homma S, Di Tullio MR, Sacco RL, et al.: Surgical closure of patent foramen ovale in cryptogenic stroke patients. Stroke 1997, 28:2376–2381.

    PubMed  CAS  Google Scholar 

  43. Dearani JA, Ugurlu BS, Danielson JK, et al.: Surgical patent foramen ovale closure for prevention of paradoxical embolism-related cerebrovascular ischemic events. Circulation 1999, 100:II 171–175.

    CAS  Google Scholar 

  44. Windecker S, Wahl A, Chatterjee T, et al.: Percutaneous closure of patent foramen ovale in patients with paradoxical embolism: long-term risk of recurrent thromboembolic events. Circulation 2000, 101:893–898. In 80 patients undergoing transcatheter PFO closure after at least one paradoxical embolic episode, the combined incidence of stroke, TIA, and peripheral embolism was 3.4% per year over a mean follow-up of 1.6 ± 1.4 years.

    PubMed  CAS  Google Scholar 

  45. Hung J, Landzberg MJ, Jenkins KJ, et al.: Closure of patent foramen ovale for paradoxical emboli: intermediate-term risk of recurrent neurological events following transcatheter device placement. J Am Coll Cardiol 2000, 35:1311–1316.

    Article  PubMed  CAS  Google Scholar 

  46. Agmon Y, Khandheria BK, Meissner I, et al.: Frequency of atrial septal aneurysms in patients with cerebral ischemic events. Circulation 1999, 99:1942–1944. In 363 normal subjects and 355 age- and sex-matched patients with cerebral ischemic events undergoing TEE as part of the Stroke Prevention: Assessment of Risk in a Community (SPARC), prevalence of atrial septal aneurysm was 2.2 % and 7.9%, respectively (P — 0.002).

    PubMed  CAS  Google Scholar 

  47. Mugge A, Daniel WG, Angermann C, et al.: Atrial septal aneurysm in adult patients. A multicenter study using transthoracic and transesophageal echocardiography. Circulation 1995, 91:2785–2792.

    PubMed  CAS  Google Scholar 

  48. Roldan CA, Shively BK, Crawford MH: Valve excrescences: prevalence, evolution and risk for cardioembolism. J Am Coll Cardiol 1997, 30:1308–1314.

    Article  PubMed  CAS  Google Scholar 

  49. Roberts JK, Omarali I, Di Tullio MR, et al.: Valvular strands and cerebral ischemia. Effect of demographics and strands characteristics. Stroke 1997, 28:2185–2188.

    PubMed  CAS  Google Scholar 

  50. Cohen A, Tzourio C, Chauvel C, et al.: Mitral valve strands and the risk of ischemic stroke in elderly patients. The French Study of Aortic Plaques in Stroke (FAPS) Investigators. Stroke 1997, 28:1574–1578.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Tullio, M.R., Homma, S. Mechanisms of cardioembolic stroke. Curr Cardiol Rep 4, 141–148 (2002). https://doi.org/10.1007/s11886-002-0027-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-002-0027-3

Keywords

Navigation