Log in

Lipid Effects of Antihypertensive Medications

  • Nonstatin Drugs (W Borden, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Thiazide diuretics and beta-blockers are first-line therapies for hypertension unless there are compelling indications for other drug classes. Diuretics and beta-blockers, however, may worsen dyslipidemia and glucose tolerance whereas antihypertensive agents in other drug classes may have neutral or beneficial effects. Initial clinical trials of antihypertensive regimens suggested that blood pressure lowering was the most important aspect of therapy and that the adverse effects on lipids and glucose tolerance did not impact clinical outcomes. Newer trials, however, question this finding and implicate these pleotropic effects as contributing to the results of the trials. Patients with cardiometabolic risk factors may have compelling indications for agents that inhibit the renin-angiotensin-aldosterone system, relegating diuretics and beta-blockers to third-line therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289:2560–72.

    Article  PubMed  CAS  Google Scholar 

  2. Mokdad AH, Ford ES, Bowman BA, et al. Diabetes trends in the U.S.: 1990–1998. Diabetes Care. 2000;23:1278–83.

    Article  PubMed  CAS  Google Scholar 

  3. Gress TW, Nieto FJ, Shahar E, et al. Hypertension and anti-hypertensive therapy as risk factors for Type 2 diabetes mellitus. N Engl J Med. 2000;342:905–12.

    Article  PubMed  CAS  Google Scholar 

  4. Stas S, Appesh L, Sowers J. Metabolic safety of antihypertensive drugs: myth versus reality. Curr Hypertens Rep. 2006;8:403–8.

    Article  PubMed  CAS  Google Scholar 

  5. Weidmann P, de Courten M, Ferrari P, et al. Serum lipoproteins during treatment with antihypertensive drugs. J Cardiovasc Pharmacol. 1993;22 Suppl 6:S98–105.

    PubMed  Google Scholar 

  6. Lardinois CK, Newman SL. The effects of antihypertensive agents on serum lipids and lipoproteins. Arch Intern Med. 1988;148:1280–8.

    Article  PubMed  CAS  Google Scholar 

  7. Lasser NL, Grandits G, Caggiula AQ, et al. Effects of antihypertensive therapy on plasma lipids and lipoproteins in the Multiple Risk Factor Intervention Trial. Am J Med. 1984;76:52–62.

    Article  PubMed  CAS  Google Scholar 

  8. Feher MD, Betteridge DJ. Lipids, lipoproteins, and coronary heart disease: implications for antihypertensive therapy. Cardiovasc Drugs Ther. 1989;3 Suppl 1:333–40.

    Article  PubMed  Google Scholar 

  9. Kasiske BL, Ma JZ, Roberto SN, et al. Effects of antihypertensive therapy on serum lipids. Ann Intern Med. 1995;122:133–41.

    PubMed  CAS  Google Scholar 

  10. Lakshman MR, Reda DJ, Matersib BJ, et al. Diuretics and beta-blockers do not have adverse effects at 1 year on plasma lipid and lipoprotein profiles in men with hypertension. Arch Intern Med. 1999;159:551–8.

    Article  PubMed  CAS  Google Scholar 

  11. Weir MR, Moser M. Diuretics and beta-blockers: is there a risk for dyslipidemia? Am Heart J. 2000;139:174–83.

    Article  PubMed  CAS  Google Scholar 

  12. ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic. JAMA. 2002;288:2981–97.

    Article  Google Scholar 

  13. Stump CS, Hamilton MT, Sowers JR. Effect of anti-hypertensive agents on the development of type 2 diabetes mellitus. Mayo Clin Proc. 2006;81:796–806.

    Article  PubMed  CAS  Google Scholar 

  14. Perez-Stable E, Caralis PV. Thiazide-induced disturbances in carbohydrate, lipid, and potassium metabolism. Am Heart J. 1983;106:245–51.

    Article  PubMed  CAS  Google Scholar 

  15. Lithell HO. Effect of antihypertensive drugs on insulin, glucose, and lipid metabolism. Diabetes Care. 1991;14:203–9.

    Article  PubMed  CAS  Google Scholar 

  16. Harper R, Ennis CN, Sheridan B, et al. Effects of low dose versus conventional dose thiazide diuretic on insulin action in essential hypertension. BMJ. 1994;309:226–30.

    Article  PubMed  CAS  Google Scholar 

  17. Sowers J, Bakris G. Antihypertensive therapy and the risk of Type 2 diabetes mellitus. New Engl J Med. 2000;342:969–70.

    Article  PubMed  CAS  Google Scholar 

  18. Goldner MG, Zurkowitz H, Akgren S. Hyperglycemia and glycosuria due to thiazide derivatives administered in diabetes mellitus. New Engl J Med. 1960;262:405–505.

    Article  Google Scholar 

  19. Shapiro AP, Benedek TG, Small JL. Effect of thiazides on carbohydrate metabolism in patients with hypertension. New Engl J Med. 1961;265:1028–33.

    Article  Google Scholar 

  20. Padwal R, Laupacis A. Antihypertensive therapy and incidence of type 2 diabetes. Diabetes Care. 2004;27:247–55.

    Article  PubMed  Google Scholar 

  21. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta analysis. Lancet. 2007;369:201–7.

    Article  PubMed  CAS  Google Scholar 

  22. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension: final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA. 1991;265:3255–64.

    Article  Google Scholar 

  23. Papadopoulos DP, Papademetriou V. Metabolic side effects and cardiovascular events of diuretics: should a diuretic remain the first choice therapy in hypertension treatment? The case of yes. Clin Exp Hypertens. 2007;29:503–16.

    Article  PubMed  CAS  Google Scholar 

  24. Brook RD. Mechanism of differential effects of antihypertensive agents on serum lipids. Curr Hypertens Rep. 2000;2:370–7.

    Article  PubMed  CAS  Google Scholar 

  25. Weinberger MH. Mechanisms of diuretic effects on carbohydrate tolerance, insulin sensitivity and lipid levels. Eur Heart J. 1992;13(suppl G):5–9.

    PubMed  CAS  Google Scholar 

  26. Helderman JH, Elahi D, Andersen DK, et al. Prevention of the glucose intolerance of thiazide diuretics by maintenance of body potassium. Diabetes. 1983;32:106–11.

    Article  PubMed  CAS  Google Scholar 

  27. • Chatterjee R, Yeh HC, Shafi T, et al Serum and dietary potassium and risk of incident type 2 diabetes mellitus: the Atherosclerosis Risk in Communities (ARIC) study. Arch Intern Med. 2010;170:1745–51. This observational study suggests a link between serum potassium levels and the risk of incident diabetes mellitus and may help explain the higher incidence of diabetes in individuals treated with thiazide diuretics.

    Article  PubMed  CAS  Google Scholar 

  28. Shafi T, Appel LJ, Miller ER, et al. Changes in serum potassium mediate thiazide-induced diabetes. Hypertension. 2008;52:1022–9.

    Article  PubMed  CAS  Google Scholar 

  29. Menon DV, Arbique D, Wang Z, et al. Differential effects of chlorthalidone versus spironolactone on muscle sympathetic nerve activity in hypertensive patients. J Clin Endocrinol Metab. 2009;94:1361–6.

    Article  PubMed  CAS  Google Scholar 

  30. Pepine C, Cooper-DeHoff R. Cardiovascular therapies and risk for development of diabetes. J Am Coll Cardiol. 2004;44:509–5012.

    Article  PubMed  CAS  Google Scholar 

  31. Hunninghake DB. Effects of celiprolol and other anti-hypertensive agents on serum lipids and lipoproteins. Am Heart J. 1991;121:696–701.

    Article  PubMed  CAS  Google Scholar 

  32. Giugliano D, Acampora R, Marfella R, et al. Metabolic and cardiovascular effects of carvedilol and atenolol in non-insulin dependent diabetes mellitus and hypertension. Ann Intern Med. 1997;126:955–9.

    PubMed  CAS  Google Scholar 

  33. Cruickshank JM. Are we misunderstanding beta-blockers? Int J Cardiol. 2007;120:10–27.

    Article  PubMed  CAS  Google Scholar 

  34. Sharp R, Sirajuddin R, Sharief I. Impact of carvedilol on the serum lipid profile. Ann Pharmacother. 2008;42:564–71.

    Article  PubMed  CAS  Google Scholar 

  35. Bakris GL, Fonseca V, Katholi RE, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension. JAMA. 2004;292:2227–36.

    Article  PubMed  CAS  Google Scholar 

  36. Hedblad B, Wikstrand J, Janzon L, et al. Low dose metoprolol CR/XL and fluvastatin slow progression of carotid intima-media thickness: main results from the Beta-Blocker Cholesterol-Lowering Asymptomatic Plaque Study (BCAPS). Circ. 2001;103:1721–6.

    CAS  Google Scholar 

  37. Wiklund O, Hulthe J, Wistrand J, et al. Effect of controlled release/extended release metoprolol on carotid intima-media thickness in patients with hypercholesterolemia: a 3-year randomized study. Stroke. 2002;33:572–7.

    Article  PubMed  CAS  Google Scholar 

  38. Torp-Pedersen C, Metra M, Charlesworth A, et al. Effects of metoprolol and carvedilol on pre-existing and new onset diabetes in patients with chronic heart failure: data from the Carvedilol Or Metoprolol European Trial (COMET). Heart. 2007;93:968–73.

    Article  PubMed  CAS  Google Scholar 

  39. Pollare T, Lithell H, Selinus I, et al. Sensitivity to insulin during treatment with atenolol and metoprolol: a randomized, double blind study of effects on carbohydrate and lipoprotein metabolism in hypertensive patients. BMJ. 1989;298:1152–7.

    Article  PubMed  CAS  Google Scholar 

  40. Sarafidis PA, Bakris GL. Do the metabolic effects of beta blockers make them leading or supporting antihypertensive agents in the treatment of hypertension? J Clin Hypertens. 2006;8:351–6.

    Article  CAS  Google Scholar 

  41. Rossner S, Taylor CL, Byington RP, et al. Long term propranolol treatment and changes in body weight after myocardial infarction. BMJ. 1990;300:902–3.

    Article  PubMed  CAS  Google Scholar 

  42. Hara Y, Hamada M, Shigematsu Y, et al. Effect of beta blockers on insulin resistance in patients with dilated cardiomyopathy. Circ. 2003;67:701–4.

    Article  CAS  Google Scholar 

  43. Malminiemi K. Long-term celiprolol therapy lowers fasting plasma leptin levels. Cardiovasc Drugs Ther. 2000;14:67–75.

    Article  PubMed  CAS  Google Scholar 

  44. Wikstrand J, Berglund G, Hedblad B, et al. Antiatherosclerotic effects of beta-blockers. Am J Cardiol. 2003;91:25H–9H.

    Article  PubMed  CAS  Google Scholar 

  45. Wu J, Kraja AT, Oberman A, et al. A summary of the effects of antihypertensive medications on measured blood pressure. Am J Hypertens. 2005;18:935–42.

    Article  PubMed  CAS  Google Scholar 

  46. Ferdinand K, Armani A. The management of hypertension in African Americans. Crit Pathw Cardiol. 2007;6:67–71.

    Article  PubMed  Google Scholar 

  47. Sever P, Dahlof B, Poulter N, et al. Potential synergy between lipid-lowering and blood-pressure-lowering in the Anglo-Scandinavian Cardiac Outcomes Trial. Eur Heart J. 2006;27:2982–8.

    Article  PubMed  CAS  Google Scholar 

  48. Fogari R, Derosa G, Zoppi A, et al. Effect of delapril/manidipine vs olmesartan/hydrochlorothiazide combination on insulin sensitivity and fibrinogen in obese hypertensive patients. Intern Med. 2008;47:361–6.

    Article  PubMed  Google Scholar 

  49. Mason RP. A rational for combined therapy with a calcium channel blocker and a statin: evaluation of basic and clinical evidence. Curr Drug Targets Cardiovasc Haematol Disord. 2005;5:489–501.

    Article  PubMed  CAS  Google Scholar 

  50. Bellosta S, Bernin F. Lipophilic calcium antagonists in antiatherosclerotic therapy. Curr Atherosclerosis Rep. 2000;2:76–81.

    Article  CAS  Google Scholar 

  51. Nissen SE, Tuzcu EM, Libby P, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure. JAMA. 2004;292:2217–26.

    Article  PubMed  CAS  Google Scholar 

  52. Sarafidis P, McFarlane S. Antihypertensive agents, insulin sensitivity, and new-onset diabetes. Curr Diabetes Rep. 2007;7:191–9.

    Article  CAS  Google Scholar 

  53. Pollare T, Lithell H, Berne C. A comparison of the effects of hydrochlorothiazide and captopril on glucose and lipid metabolism in patients with hypertension. N Engl J Med. 1989;321:868–73.

    Article  PubMed  CAS  Google Scholar 

  54. The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme-inhibitor, ramipril, on cardiovascular events in high-risk individuals. N Engl J Med. 2000;342:145–53.

    Article  Google Scholar 

  55. •• Vardeny O, Uno H, Braunwald E, et al. Opposing effects of beta blockers and angiotensin-converting enzyme inhibitors on development of new-onset diabetes mellitus in patients with stable coronary artery disease. Am J Cardiol. 2011;107:1705–09. These data from the PEACE trial show a nearly 9% increased risk of new-onset diabetes mellitus in CAD patients treated with beta-blockers. This risk was significantly attenuated if they were also treated with an ACE inhibitor.

    Article  PubMed  CAS  Google Scholar 

  56. Julius S, Kjedlsen SE. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomized trial. Lancet. 2004;363:2022–31.

    Article  PubMed  CAS  Google Scholar 

  57. • Rizos C, Elisaf MS, Liberopoulos EN. Are the pleotropic effects of telmisartan clinically relevant? Curr Pharn Des. 2009;15:2815–32. The authors argue that the ARB telmisartan may have additional pleiotropic effects, especially in the realm of glucose metabolism, that make this agent potentially favorable over other agents. Clinical studies, however, have yet to show definitive results confirming superiority over other ARBs.

    Article  CAS  Google Scholar 

  58. Holzgreve H, Nakov R. Antihypertensive therapy with verapamil SR plus trandolapril versus atenolol plus chlorthalidone on glycemic control. Am J Hypertens. 2003;16:381–6.

    Article  PubMed  CAS  Google Scholar 

  59. Jamerson K, Weber MA, Bakris GL, et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. New Engl J Med. 2008;359:2417–28.

    Article  PubMed  CAS  Google Scholar 

  60. Scheen A. Renin-angiotensin system inhibition prevents type 2 diabetes mellitus. Part 2: overview of physiological and biochemical mechanisms. Diabetes Met. 2004;30:498–505.

    Article  CAS  Google Scholar 

  61. McFarlane SI, Kumar A, Sowers JR. Mechanism by which angiotensin-converting enzyme inhibitors prevent diabetes and cardiovascular disease. Am J Cardiol. 2003;91:30H–7H.

    Article  PubMed  CAS  Google Scholar 

  62. Mancia G, Grassi G. New-onset diabetes and antihypertensive drugs. J Hypertens. 2006;24:3–10.

    Article  PubMed  CAS  Google Scholar 

  63. Mason RP. A rational for combination therapy in risk factor management: a mechanistic perspective. Am J Med. 2005;118(Suppl 12A):54–61.

    Article  PubMed  Google Scholar 

  64. Luscher TF, Wenzel RR, Moreau P, et al. Vascular protective effects of ACE inhibitors and calcium antagonists: theoretical basis for a combination therapy in hypertension and other cardiovascular diseases. Cardioavsc Drugs Ther. 1995;9 Suppl 3:509–23.

    Article  Google Scholar 

  65. Pollare T, Lithell H. Application of prazosin is associated with an increase of insulin sensitivity in obese patients with hypertension. J Hypertens. 1988;31:415–20.

    CAS  Google Scholar 

  66. • Chapman N, Chen CY, Fukita T, et al. Time to re-appraise the role of alpha- adrenoceptor antagonists in the management of hypertension. J Hypertens. 2010;28:1796–803. Data from the ASCOT trial show that the addition of a long-acting preparation of the alpha-blocker doxazosin brought about a further blood pressure lowering and a modest reduction in lipids without an increase in heart failure. The authors suggest that alpha-blockers are safe as add-on antihypertensive therapy.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

R. Deano: none; M. Sorrentino has received payment for development of educational presentations from Merck, Pfizer, and Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Sorrentino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deano, R., Sorrentino, M. Lipid Effects of Antihypertensive Medications. Curr Atheroscler Rep 14, 70–77 (2012). https://doi.org/10.1007/s11883-011-0214-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-011-0214-z

Keywords

Navigation