Log in

Interleukin-13 in asthma pathogenesis

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Numerous studies have clearly shown that the Th2 cytokine, interleukin (IL)-13, is the central regulator of the allergic diathesis. Initial studies in animal models of disease provided compelling evidence that IL-13, independent of other Th2 cytokines, was both necessary and sufficient to induce all features of allergic asthma. The importance of IL-13 in allergic disorders in humans is supported by consistent associations between tissue IL-13 levels and genetic variants in the IL-13 gene with asthma and related traits. With the preponderance of evidence continuing to support the importance of IL-13 in allergic disorders, attention is now turned toward understanding the mechanisms by which this cytokine might mediate the pathophysiologic features of allergic disease. The emerging paradigm is that IL-13 induces features of the allergic response via its actions on epithelial cells and smooth muscle cells, not through traditional effector pathways involving eosinophils and IgE-mediated events. In light of these recent developments, in this review our current understanding of the role of IL-13 in the pathogenesis of asthma is explored, with a particular focus on new insights into the mechanisms by which IL-13 induces the features of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Coyle AJ, Le Gros G, Bertrand C, et al.: Interleukin-4 is required for the induction of lung Th2 mucosal immunity. Am J Respir Cell Mol Biol 1995, 13:54–59.

    PubMed  CAS  Google Scholar 

  2. Rankin JA, Picarella DE, Geba GP, et al.: Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc Natl Acad Sci U S A 1996, 93:7821–7825.

    Article  PubMed  CAS  Google Scholar 

  3. Hogan SP, Matthaei Ki, Young JM, et al.: A novel T cell-regulated mechanism modulating allergen-induced airways hyperreactivity in BALB/c mice independently of IL-4 and IL-5. J Immunol 1998, 161:1501–1509.

    PubMed  CAS  Google Scholar 

  4. Cohn L, Tepper JS, Bottomly K: Cutting edge: IL-4-independent induction of airway hyperresponsiveness by Th2, but not Th1, cells. J Immunol 1998, 161:3813–3816.

    PubMed  CAS  Google Scholar 

  5. Gavett SH, O’Hearn DJ, Karp CL, et al.: Interleukin-4 receptor blockade prevents airway responses induced by antigen challenge in mice. Am J Physiol Lung Cell Mol Physiol 1997, 272:L253-L261.

    CAS  Google Scholar 

  6. Kuperman D, Schofield B, Wills-Karp M, et al.: Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med 1998, 187:939–948.

    Article  PubMed  CAS  Google Scholar 

  7. Wills-Karp M, Luyimbazi J, Xu X, et al.: Interleukin-13: central mediator of allergic asthma. Science 1998, 282:2258–2261.

    Article  PubMed  CAS  Google Scholar 

  8. Grunig G, Warnock M, Wakil AE, et al.: Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998; 282:2261–2262.

    Article  PubMed  CAS  Google Scholar 

  9. Zhu Z, Homer RJ, Wang Z, et al.: Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999, 102:779–788.

    Google Scholar 

  10. McKenzie GJ, Emson CL, Bell SE, et al.: Impaired development of Th2 cells in IL-13 deficient mice. Immunity 1998, 9:423–432.

    Article  PubMed  CAS  Google Scholar 

  11. Walter DM, McIntire JJ, Berry G, et al.: Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol 2001, 167:4668–4675.

    PubMed  CAS  Google Scholar 

  12. Akbari O, Stock P, Meyer E, et al.: Essential role of NKT cells producing IL-4 and IL-13 in the development of allergeninduced airway hyperreactivity. Nat Med 2003, 9:582–588.

    Article  PubMed  CAS  Google Scholar 

  13. Schmid-Grendelmeier P, Altznauer F, Fischer B, et al.: Eosinophils express functional IL-13 in eosinophilic inflammatory diseases. J Immunol 2002, 169:1021–1027.

    PubMed  CAS  Google Scholar 

  14. Mattes J, Yang M, Mahalingam S, et al.: Intrinsic defect in T cell production of interleukin (IL)-13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma. J Exp Med 2002, 195:1433–1444.

    Article  PubMed  CAS  Google Scholar 

  15. Grunstein MM, Hakonarson H, Leiter J, et al.: IL-13-dependent autocrine signaling mediates altered responsiveness of IgEsensitized airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2002, 282:L520-L528.

    PubMed  CAS  Google Scholar 

  16. Temann UA, Geba GP, Rankin JA, et al.: Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med 1998, 188:1307–1320.

    Article  PubMed  CAS  Google Scholar 

  17. Temann UA, Ray P, Flavell RA: Pulmonary overexpression of IL-9 induces Th2 cytokine expression, leading to immune pathology. J Clin Invest 2002, 109:29–39.

    Article  PubMed  CAS  Google Scholar 

  18. Fort MM, Cheung J, Yen D, et al.: IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001, 5:985–995.

    Article  Google Scholar 

  19. Hurst SD, Muchamuel T, Gorman DM, et al.: New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol 2002, 169:443–453.

    PubMed  CAS  Google Scholar 

  20. Elliott KA, Osna NA, Scofield MA, et al.: Regulation of IL-13 production by histamine in cloned murine T helper type 2 cells. Int Immunopharmacol 2001, 1:1923–1937.

    Article  PubMed  CAS  Google Scholar 

  21. Blackburn MR, Lee CG, Young HWJ, et al.: Adenosine mediates IL-13-induced inflammation and remodeling in the lung and interacts in an IL 13-adenosine amplification pathway. J Clin Invest 2003, 112:332–344.

    Article  PubMed  CAS  Google Scholar 

  22. Kishikawa H, Sun J, Choi A, et al.: The cell type-specific expression of the murine IL-13 gene is regulated by GATA-3. J Immunol 2002, 167:4414–4420.

    Google Scholar 

  23. Lavenu-Bombled C, Trainor CD, Makeh I, et al.: Interleukin-13 gene expression is regulated by GATA-3 in T cells. J Biol Chem 2002, 277:18313–18321.

    Article  PubMed  CAS  Google Scholar 

  24. Graber P, Gretener D, Herren S, et al.: The distribution of IL-13 receptor alpha 1 expression on B cells, T cells, and monocytes and its regulation by IL-13 and IL-4. Eur J Immunol 1998, 28:4286–4298.

    Article  PubMed  CAS  Google Scholar 

  25. Mattes J, Yang M, Siqueira A, et al.: IL-13 induces airways hyperreactivity independently of the IL-4R alpha chain in the allergic lung. J Immunol 2001, 167:1683–1692.

    PubMed  CAS  Google Scholar 

  26. Chiaramonte MG, Mentink-Kane M, Jacobson BA, et al.: Regulation and function of the interleukin 13 receptor alpha during a T helper cell type 2-dominant immune response. J Exp Med 2003, 197:687–701.

    Article  PubMed  CAS  Google Scholar 

  27. Zheng T, Liu W, Lee CG, et al.: Cytokine regulation of IL-13RA2 and IL-13RA1 in vivo and in vitro. J Allergy Clin Immunol 2003, 111:720–728.

    Article  PubMed  CAS  Google Scholar 

  28. Daines MO, Hershey GKK: A novel mechanism by which interferon-gamma can regulate interleukin(IL)-13 responses. J Biol Chem 2002, 277:10387–10393.

    Article  PubMed  CAS  Google Scholar 

  29. Dienger KM, Herman NS, Donaldson D, et al.: The complex role of IL-13 receptor alpha 2 knockout mice in allergic responses. Am J Respir Crit Care Med 2003, 167:A727.

    Google Scholar 

  30. Pope SM, Brandt EB, Mishra A, et al.: IL-13 induces eosinophil recruitment into the lung by an IL-5 and eotaxin-dependent mechanism. J Allergy Clin Immunol 2001, 108:594–601.

    Article  PubMed  CAS  Google Scholar 

  31. Li L, **a Y, Nguyen A, et al.: Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J Immunol 1999, 162:2477–2487.

    PubMed  CAS  Google Scholar 

  32. Hirst SJ, Hallsworth MP, Peng QI, et al.: Selective induction of eotaxin release by interleukin-13 or interleukin-4 in human airway smooth muscle cells is synergistic with interleukin-1B and is mediated by the interleukin-4 receptor a-chain. Am J Respir Crit Care Med 2002, 165:1161–1171.

    PubMed  Google Scholar 

  33. Moore PE, Church TL, Chism DD, et al.: IL-13 and IL-4 cause eotaxin release in human airway smooth muscle cells: a role for ERK. Am J Physiol Lung Cell Mol Physiol 2002, 282:847–853.

    Google Scholar 

  34. Chibana K, Ishii Y, Asakura T, Fukuda T: Up-regulation of cysteinyl leukotriene 1 receptor by IL-13 enables human lung fibroblasts to respond to leukotriene C4 and produce eotaxin. J Immunol 2003, 170:4290–4295.

    PubMed  CAS  Google Scholar 

  35. Zheng T, Zhu Z, Wang Z, et al.: Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase-and cathepsindependent emphysema. J Clin Invest 2000, 106:1081–1093.

    Article  PubMed  CAS  Google Scholar 

  36. Chiaramonte MG, Donaldson DD, Cheever AW, et al.: An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 1999, 104:777–785.

    PubMed  CAS  Google Scholar 

  37. Richter A, Puddicombe SM, Lordan JL, et al.: The contribution of interleukin (IL)-4 and IL-13 to the epithelial-mesenchymal trophic unit in asthma. Am J Respir Cell Mol Biol 2001, 25:385–391.

    PubMed  CAS  Google Scholar 

  38. Wen FQ, Kohyama T, Liu X, et al.: Interleukin-4- and interleukin-13-enhanced transforming growth factor beta-2 production in cultured human bronchial epithelial cells is attenuated by interferon-gamma. Am J Respir Cell Mol Biol 2002, 26:484–490.

    PubMed  CAS  Google Scholar 

  39. Liu X, Kohyama T, Wang H, Zhu YK, et al.: Th2 cytokine regulation of type I collagen gel contraction mediated by human lung mesenchymal cells. Am J Physiol Lung Cell Mol Physiol 2002, 282:L1049-L1056.

    PubMed  CAS  Google Scholar 

  40. Ingram JL, Rice A, Geisenhoffer K, et al.: Interleukin-13 stimulates the proliferation of lung myofibroblasts via a signal transducer and activator of transcription-6 dependent mechanism. Chest 2003, 123:422S-424S.

    Article  PubMed  CAS  Google Scholar 

  41. Cohn L, Homer RJ, MacLeod H, et al.: Th2-induced airway mucus production is dependent on IL-4Ralpha, but not on eosinophils. J Immunol 1999, 162:6178–6183.

    PubMed  CAS  Google Scholar 

  42. McMillan SJ, Bishop B, Townsend MJ, et al.: The absence of interleukin-9 does not affect the development of allergenionduced pulmonary inflammation nor airway hyperreactivity. J Exp Med 2002, 195:51–57.

    Article  PubMed  CAS  Google Scholar 

  43. Dudley KL, Chiaramonte M, Wills-Karp M: Upregulation of mucin related genes is associated with susceptibility to allergen-induced hyperresponsiveness. Am J Respir Crit Care Med 2002, A693.

  44. Booth BW, Adler KB, Bonner JC, et al.: Interleukin-13 induces proliferation of human airway epithelial cells in vitro via a mechanism mediated by transforming growth factor-alpha. Am J Respir Cell Mol Biol 2001, 25:739–743.

    PubMed  CAS  Google Scholar 

  45. Laoukili J, Perret E, Willems T, et al.: IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. J Clin Invest 2001, 108:1817–1824.

    Article  PubMed  CAS  Google Scholar 

  46. Dabahay H, Atherton H, Jones G, et al.: Interleukin-13 induces a hypersecretory ion transport phenotype in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2002, 282:L226-L236.

    Google Scholar 

  47. Nakanishi A, Morita S, Iwashita H, et al.: Role of gob-5 in mucus overproduction and airway hyperresponsiveness in asthma. Proc Natl Acad Sci U S A 2001, 98:5175–5180.

    Article  PubMed  CAS  Google Scholar 

  48. Zhou Y, Dong Q, Louahed J, et al.: Characterization of a calciumactivated chloride channel as a shared target of Th2 cytokine pathways and its potential involvement in asthma. Am J Respir Cell Mol Biol 2001, 25:486–491.

    PubMed  CAS  Google Scholar 

  49. Leverkoehne I, Gruber AD: The murine mCLCA3 (alias gob-5) protein is localized in the mucin granule membranes of intestinal, respiratory, and uterine goblet cells. J Histochem Cytochem 2002, 50:829–838.

    PubMed  CAS  Google Scholar 

  50. Izuhara K: The role of interleukin-4 and interleukin-13 in the non-immunologic aspects of asthma pathogenesis. Clin Chem Lab Med 2003, 41:860–864.

    Article  PubMed  CAS  Google Scholar 

  51. Singer M, Lefort J, Vargaftig BB: Granulocyte depletion and dexamethasone differentially modulate airways hyperreactivity, inflammation, mucus accumulation, and secretion induced by rmIL-13 or antigen. Am J Respir Cell Mol Biol 2002, 26:74–84.

    PubMed  CAS  Google Scholar 

  52. Venkayya R, Lam M, Willkom M, et al.: The Th2 lymphocyte products IL-4 and IL-13 rapidly induce airway hyperresponsiveness through direct effects on resident airway cells. Am J Respir Cell Mol Biol 2002, 26:202–208.

    PubMed  CAS  Google Scholar 

  53. Yang M, Hogan SP, Henry PJ, et al.: Interleukin-13 mediates airways hyperreactivity through the IL-4 receptor-alpha chain and STAT-6 independently of IL-5 and eotaxin. Am J Respir Cell Mol Biol 2001, 25:522–530.

    PubMed  CAS  Google Scholar 

  54. Laporte JC, Moore PE, Baraldo S, et al.: Direct effects of interleukin-13 on signaling pathways for physiological responses in cultured human airway smooth muscle cells. Am J Respir Crit Care Med 2001, 164:141–148.

    PubMed  CAS  Google Scholar 

  55. Espinosa K, Bosse Y, Stankova J, Rola-Pleszczynski M: CysLT1 receptor upregulation by TGF-beta and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. J Allergy Clin Immunol 2003, 111:1032–1040.

    Article  PubMed  CAS  Google Scholar 

  56. Kuperman DA, Huang X, Koth LL, et al.: Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med 2002, 8:885–889. An intriguing study implicating the IL-13/IL-4 signaling pathway in the epithelium as the primary regulator of airway hyperresponsiveness.

    PubMed  CAS  Google Scholar 

  57. Meurs H, McKay S, Maarsingh H, et al.: Increased arginase activity underlies allergen-induced deficiency of cNOSderived nitric oxide and airway hyperresponsiveness. Br J Pharmacol 2002, 136:391–398.

    Article  PubMed  CAS  Google Scholar 

  58. Zimmerman N, King NE, Laporte J, et al.: Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest 2003, 111:1815–1817.

    Article  CAS  Google Scholar 

  59. Dienger KM, Wills-Karp M: Interleukin-13 regulation of complement factor 3 production by human bronchial epithelial cells. Am J Respir Crit Care Med 2002, A733.

  60. Bautsch W, Hoymann HG, Zhang Q, et al.: Cutting edge: guinea pigs with a natural C3a-receptor defect exhibit decreased bronchoconstriction in allergic airway disease: evidence for an involvement of the C3a anaphylatoxin in the pathogenesis of asthma. J Immunol 2000, 165:5401–5405.

    PubMed  CAS  Google Scholar 

  61. Humbles AA, Lu B, Nilsson CA, et al.: A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature 2000, 406:998–1001.

    Article  PubMed  CAS  Google Scholar 

  62. Huang SK, **ao HQ, Kleine-Tebbe J, et al.: IL-13 expression at the sites of allergen challenge in patients with asthma. J Immunol 1995, 155:2688–2694.

    PubMed  CAS  Google Scholar 

  63. Humbert M, Durham SR, Kimmitt P, et al.: Elevated expression of messenger ribonucleic acid encoding IL-13 in the bronchial mucosa of atopic and nonatopic subjects with asthma. J Allergy Clin Immunol 1997, 99:657–665.

    Article  PubMed  CAS  Google Scholar 

  64. Gabrielsson S, Soderland A, Paulie S, et al.: Specific immunotherapy prevents increased levels of allergen-specific IL-4 and IL-13-producing cells during pollen season. Allergy 2001, 56:293–300.

    Article  PubMed  CAS  Google Scholar 

  65. Naseer T. Minshall EM, Leung DY, et al.: Expression of IL-12 and IL-13 mRNA in asthma and their modulation in response to steroid therapy. Am J Respir Crit Care Med 1997, 155:845–851.

    PubMed  CAS  Google Scholar 

  66. Ohshima Y, Yasutomi M, Omata N, et al.: Dysregulation of IL-13 production by cord blood CD4+ T cells is associated with the subsequent development of atopic disease in infants. Pediatr Res 2002, 51:195–200.

    Article  PubMed  CAS  Google Scholar 

  67. van der Pouw Kraan TC, van Veen A, Boeije LCM, et al.: An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes Immun 1999, 1:61–65.

    Article  CAS  Google Scholar 

  68. Graves PE, Kabesch M, Halonen M, et al.: A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J Allergy Clin Immunol 2000, 105:506–513.

    Article  PubMed  CAS  Google Scholar 

  69. Heinzmann A, Mao XQ, Akaiwa M, et al.: Genetic variants of IL-13 signalling and human asthma and atopy. Hum Mol Genet 2000, 9:549–559.

    Article  PubMed  CAS  Google Scholar 

  70. Celedon JC, Soto-Quiros ME, Palmer LJ, et al.: Lack of association between a polymorphism in the interleukin-13 gene and total serum immunoglobulim E level among nuclear families in Costa Rica. Clin Exp Allergy 2002, 32:387–390.

    Article  PubMed  CAS  Google Scholar 

  71. Arima K, Umeshita-Suyama R, Sakata Y, et al.: Upregulation of IL-13 concentration in vivo by the IL13 variant associated with bronchial asthma. J Allergy Clin Immunol 2002, 109:980–987. This excellent study provides a potential functional mechanism for the strong association between the Gln110 variant in the IL-13 gene and asthma-related traits.

    Article  PubMed  CAS  Google Scholar 

  72. Mohrs M, Blankespoor CM, Wang ZE, et al.: Deletion of a coordinate regulator of type 2 cytokine expression in mice. Nat Immunol 2001, 2:842–847.

    Article  PubMed  CAS  Google Scholar 

  73. Noguchi E, Nukaga-Nishio Y, Jian Z, et al.: Haplotypes of the 5’ region of the IL-4 gene and SNPs in the intergene sequence between the IL-4 and IL-13 genes are associated with atopic asthma. Hum Immunol 2001, 62:1251–1257.

    Article  PubMed  CAS  Google Scholar 

  74. Howard TD, Koppelman GH, Xu J, et al.: Gene-gene interaction in asthma: IL4RA and IL13 in a Dutch population with asthma. Am J Hum Genet 2002, 70:230–236.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karp, M.W. Interleukin-13 in asthma pathogenesis. Curr Allergy Asthma Rep 4, 123–131 (2004). https://doi.org/10.1007/s11882-004-0057-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-004-0057-6

Keywords

Navigation