Log in

Map** properties for the Bargmann transform on modulation spaces

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

We investigate map** properties for the Bargmann transform and prove that this transform is isometric and bijective from modulation spaces to convenient Banach spaces of analytic functions. We also present some consequences. For example we prove that the spectrum of the Harmonic oscillator is the same for all modulation spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187–214 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory. Commun. Pure Appl. Math. 20, 1–101 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer W.: Berezin–Toeplitz quantization and composition formulas. J. Funct. Anal. 256, 3107–3142 (2007)

    Article  Google Scholar 

  4. Beals R.: Characterization of pseudodifferential operators and applications. Duke Math. J. 44, 45–57 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berezin F.A.: Wick and anti-Wick symbols of operators. Mat. Sb. (N.S.) 86, 578–610 (1971)

    MathSciNet  Google Scholar 

  6. Boggiatto P., Cordero E., Gröchenig K.H.: Anti-Wick generalized operators with symbol in distributional Sobolev spaces. Integr. Equ. Oper. Theory 48, 427–442 (2004)

    Article  MATH  Google Scholar 

  7. Bony, J.-M.: Caractérisations des opérateurs pseudo-différentiels. In: Séminaire sur les équations aux Dérivées Partielles, 1996–1997, Exp. No. XXIII. école Polytech, Palaiseau, (1997)

  8. Coburn, L.A.: The Bargmann isometry and Gabor-Daubechies wavelet localization operators. In: Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000). Oper. Theory Advances and Applications, vol. 129, pp. 169–178. Birkhäuser, Basel (2001)

  9. Daubechies I.: Time–frequency localization operators: a geometric phase space approach. IEEE Trans. Inf. Theory 34(4), 605–612 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. Technical report, University of Vienna, Vienna, 1983; also In: Krishna, M., Radha, R., Thangavelu, S. (eds.) Wavelets and their applications, pp. 99–140. Allied Publisher, New Delhi (2003)

  11. Feichtinger H.G.: Gabor frames and time–frequency analysis of distributions. J. Funct. Anal. 146(2), 464–495 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feichtinger H.G.: Modulation spaces: looking back and ahead. Sampl. Theory Signal Image Process. 5, 109–140 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Feichtinger H.G., Gröchenig K.H.: Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal. 86, 307–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feichtinger H.G., Gröchenig K.H.: Banach spaces related to integrable group representations and their atomic decompositions, II. Monatsh. Math. 108, 129–148 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feichtinger H.G., Gröchenig K.H., Walnut D.: Wilson bases and modulation spaces. Math. Nachr. 155, 7–17 (1992)

    Article  MathSciNet  Google Scholar 

  16. Folland G.B.: Harmonic analysis in phase space. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  17. Gröbner, P.: Banachräume Glatter Funktionen und Zerlegungsmethoden, Thesis. University of Vienna, Vienna (1992)

  18. Gröchenig K.H.: Describing functions: atomic decompositions versus frames. Monatsh. Math. 112, 1–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gröchenig K.H.: Foundations of Time–Frequency Analysis. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  20. Gröchenig, K.H.: Private communications (2010)

  21. Gröchenig K.H., Leinert M.: Wiener’s lemma for twisted convolution and Gabor frames. J. Am. Math. Soc. 17, 1–18 (2004)

    Article  MATH  Google Scholar 

  22. Gröchenig, K.H., Toft, J.: Isomorphism properties of Toeplitz operators and pseudo-differential operators between modulation spaces. J. Math. Anal. (to appear), ar**v:0905.4954

  23. Gröchenig, K.H., Toft, J.: The Range of localization operators and lifting theorems for modulation and Bargmann-Foch Spaces (submitted), ar**v:1010.0513

  24. Gröchenig K.H., Walnut D.: A Riesz basis for Bargmann-Fock space related to sampling and interpolation. Ark. Mat. 30, 283–295 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo B., Wang B., Zhao L.: Isometric decomposition operators, function spaces \({E_{p,q}^\lambda}\) and applications to nonlinear evolution equations. J. Funct. Anal. 233, 1–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hérau F.: Melin–Hörmander inequality in a Wiener type pseudo-differential algebra. Ark. Mat. 39, 311–338 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Holst A., Toft J., Wahlberg P.: Weyl product algebras and modulation spaces. J. Funct. Anal. 251, 463–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang C., Wang B.: Frequency uniform decomposition method for the generalized BO, KdV and NLS equations. J. Differ. Equ. 239, 213–250 (2007)

    Article  MATH  Google Scholar 

  29. Hudzik H., Wang B.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equ. 232, 36–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I–III, Springer, Berlin, Tokyo, 1983, 1985

  31. Iwabuchi T.: Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative indices. J. Differ. Equ. 248, 1972–2002 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Janssen A.J.E.M.: Bargmann transform, Zak transform, and coherent states. J. Math. Phys. 23(5), 720–731 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lerner N.: The Wick calculus of pseudo-differential operators and some of its applications. CUBO 5, 213–236 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Reed M., Simon B.: Methods of Modern Mathematical Physics. Academic Press, London (1979)

    MATH  Google Scholar 

  35. Sugimoto M., Tomita N.: The dilation property of modulation spaces and their inclusion relation with Besov spaces. J. Funct. Anal. 248(1), 79–106 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Toft J.: Continuity properties for modulation spaces with applications to pseudo-differential calculus, I. J. Funct. Anal. 207(2), 399–429 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Toft, J.: Convolution and embeddings for weighted modulation spaces. In: Boggiatto, P., Ashino, R., Wong, M.W. (eds.) Advances in Pseudo-Differential Operators, Operator Theory: Advances and Applications, 155, pp. 165–186. Birkhäuser Verlag, Basel (2004)

  38. Toft J.: Continuity properties for modulation spaces with applications to pseudo-differential calculus, II. Ann. Global Anal. Geom. 26, 73–106 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Toft J.: Minizization under entropy conditions, with applications in lower bound problems. J. Math. Phys. 45, 3216–3227 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Toft J.: Continuity and Schatten properties for pseudo-differential operators on modulation spaces. In: Toft, J., Wong, M.W., Zhu, H. (eds) Modern Trends in Pseudo-Differential Operators, Operator Theory: Advances and Applications, pp. 173–206. Birkhäuser Verlag, Basel (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Toft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Signahl, M., Toft, J. Map** properties for the Bargmann transform on modulation spaces. J. Pseudo-Differ. Oper. Appl. 3, 1–30 (2012). https://doi.org/10.1007/s11868-011-0039-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-011-0039-0

Keywords

Mathematics Subject Classification (2000)

Navigation