Log in

Quaternionic Monge-Ampère equation and Calabi problem for HKT-manifolds

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A quaternionic version of the Calabi problem on the Monge-Ampère equation is introduced, namely a quaternionic Monge-Ampère equation on a compact hypercomplex manifold with an HKT-metric. The equation is non-linear elliptic of second order. For a hypercomplex manifold with holonomy in SL(n,ℍ), uniqueness (up to a constant) of a solution is proven, aas well as the zero order a priori estimate. The existence of a solution is conjectured, similar to the Calabi-Yau theorem. We reformulate this quaternionic equation as a special case of the complex Hessian equation, making sense on any complex manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alesker, Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables, Bulletin des Sciences Mathématiques 127 (2003), 1–35; also: ar**v:math/0104209.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Alesker, Quaternionic Monge-Ampère equations, The Journal of Geometric Analysis 13 (2003), 205–238; also: ar**v:math/0208005.

    MathSciNet  Google Scholar 

  3. S. Alesker, Valuations on convex sets, non-commutative determinants, and pluripotential theory, Advances in Mathematics 195 (2005), 561–595; also: ar**v:math/0401219.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Alesker and M. Verbitsky, Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry, The Journal of Geometric Analysis 16 (2006), 375–399; also: math.CV/0510140.

    MATH  MathSciNet  Google Scholar 

  5. B. Banos, and A. Swann, Potentials for hyper-Kähler metrics with torsion, Classical Quantum Gravity 21 (2004), 3127–3135; also: ar**v:math/0402366.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. J. Baston, Quaternionic complexes, Journal of Geometry and Physics 8 (1992), 29–52.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.

    MATH  Google Scholar 

  8. C. P. Boyer, A note on hyper-Hermitian four-manifolds, Proceedings of the American Mathematical Society 102 (1988), 157–164.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Calabi, Métriques kählériennes et fibrés holomorphes, Annales Scientifiques de l’École Normale Supérieure. Quatrième Série 12 (1979), 269–294.

    MathSciNet  Google Scholar 

  10. M. M. Capria and S. M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988), 517–530.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Y. Cheng and S.-T. Yau, The real Monge-Ampère equation and affine flat structures, Proceedings of the 1980 Bei**g Symposium on Differential Geometry and Differential Equations, Vol. 1, 2, 3 (Bei**g, 1980), Science Press, Bei**g, 1982, pp. 339–370.

    Google Scholar 

  12. J.-P. Demailly, Complex Analytic and Algebraic Geometry, a book, ¡file://http://www-fourier.ujf-grenoble.fr/demailly/books.html

  13. G. Grantcharov, and Y. S. Poon, Geometry of hyper-Kähler connections with torsion, Communications in Mathematical Physics 213 (2000), 19–37.

    Article  MATH  MathSciNet  Google Scholar 

  14. Ph. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley-Intersience, New York, 1978.

    MATH  Google Scholar 

  15. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  16. F. HarveyReese, H. Lawson and Jr. Blaine, Plurisubharmonic Functions in Calibrated Geometries, ar**v:math/0601484.

  17. P. S. Howe and G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion, Physics Letters. B 379 (1996), 80–86.

    Article  MathSciNet  Google Scholar 

  18. D. D. Joyce, Compact Manifolds with Special Holonomy, Oxford Mathematical Monographs. Oxford University Press, Oxford, 2000.

    MATH  Google Scholar 

  19. N. C. Leung and S. Yi, Analytic Torsion for Quaternionic Manifolds and Related Topics, dg-ga/9710022.

  20. M. Obata, Affine connections on manifolds with almost complex, quaternionic or Hermitian structure, Japanese Journal of Mathematics 26 (1955), 43–79.

    MathSciNet  Google Scholar 

  21. S. Salamon, Quaternionic Manifolds, Communicazione inviata all’Instituto nazionale di Alta Matematica Francesco Severi.

  22. M. Verbitsky, Hypercomplex Varieties, Communications in Analysis and Geometry 7 (1999), 355–396; also: alg-geom/9703016, (1997).

    MATH  MathSciNet  Google Scholar 

  23. M. Verbitsky, Hyperholomorpic connections on coherent sheaves and stability, 40 pages, math.AG/0107182.

  24. M. Verbitsky, Hyperkaehler manifolds with torsion, supersymmetry and Hodge theory, The Asian Journal of Mathematics 6 (2002), 679–712; also: ar**v:math/0112215.

    MATH  MathSciNet  Google Scholar 

  25. M. Verbitsky, Hypercomplex structures on Kaehler manifolds, GAFA 15 (2005), 1275–1283; also: math.AG/0406390.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Verbitsky, Hypercomplex manifolds with trivial canonical bundle and their holonomy, Moscow Seminar on Mathematical Physics, II, American Mathematical Society Translations 2 (2007), 221; also: math.DG/0406537.

    MathSciNet  Google Scholar 

  27. M. Verbitsky, Quaternionic Dolbeault complex and vanishing theorems on hyperkahler manifolds, Compositio Mathematica 143 (2007), 1576–1592.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Verbitsky, Positive forms on hyperkahler manifolds, ar**v:0801.1899, 33 pages.

  29. S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Communications on Pure and Applied Analysis 31 (1978), 339–411.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Alesker.

Additional information

Semyon Alesker was partially supported by ISF grant 1369/04.

Misha Verbitsky is an EPSRC advanced fellow supported by CRDF grant RM1-2354-MO02 and EPSRC grant GR/R77773/01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alesker, S., Verbitsky, M. Quaternionic Monge-Ampère equation and Calabi problem for HKT-manifolds. Isr. J. Math. 176, 109–138 (2010). https://doi.org/10.1007/s11856-010-0022-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-010-0022-0

Keywords

Navigation