Log in

A Sco** Review on the Applications of MCDM Techniques for Parametric Optimization of Machining Processes

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Determination of the optimal input parameters for any of the machining processes plays a pivotal role in achieving the most suitable response values while fulfilling the requirements of both the manufacturers and end users. Among the present-day research community, different multi-criteria decision making (MCDM) techniques have become quite popular as effective multi-objective optimization tools to identify the most appropriate parametric combinations of different machining processes based on real-time experimental data. In this paper, more than 120 research articles (searched through Sciencedirect, Scopus and Web of Science) are reviewed while exploring the applications of different MCDM techniques in solving parametric optimization problems of turning, drilling and milling processes. This review paper would act as a knowledge-base to the decision making practitioners and process engineers in deciding the most appropriate experimental design plan to be deployed (Taguchi’s L9, L18 or L27 orthogonal array); difficult-to-cut advanced engineering materials to be machined (composites, and aluminum and titanium and their alloys); input parameters for turning, drilling and milling processes (cutting speed, feed rate and depth of cut), and corresponding responses (material removal rate and surface roughness) to study their interaction effects, MCDM tools (grey relational analysis and TOPSIS), and subjective (analytic hierarchy process) and objective (entropy method) criteria weighting techniques to be employed; and possibility of integration with other mathematical tools to deal with uncertain decision making environment. The essence of all the reviewed articles is concisely presented in succinct tabular forms, which would make this paper an asset to the researchers and practitioners. Future directions are also provided to help them in optimization of manufacturing processes leading to attainment of more pragmatic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AHP:

Analytic hierarchy process

ANN:

Artificial neural network

ARAS:

Additive ratio assessment

BWM:

Best worst method

CCD:

Central composite design

CFRP:

Carbon fiber reinforced polymer

CNC:

Computer numerical control

CODAS:

Combinative distanced-based assessment

COPRAS:

Complex proportional assessment

CRITIC:

Criteria importance through intercriteria correlation

CSA:

Cuckoo search algorithm

DF:

Desirability function

DOC:

Depth of cut

EDAS:

Evaluation based on distance from average solution

FFD:

Full factorial design

FUCOM:

Full consistency method

GA:

Genetic algorithm

GFRP:

Glass fiber reinforced polymer

GRA:

Grey relational analysis

GTMA:

Graph theory and matrix approach

MCDM:

Multi-criteria decision making

MMC:

Metal matrix composite

MOORA:

Multi-objective optimization on the basis of ratio analysis

MARICA:

Multi-attributive real–ideal comparative analysis

MARCOS:

Measurement alternatives and ranking according to compromise solution

MABAC:

Multi-attributive border approximation area comparison

MRR:

Material removal rate

NSGA-II:

Non-dominated sorting genetic algorithm-II

OA:

Orthogonal array

PSI:

Preference Selection Index

PCA:

Principal component analysis

PEEK:

Poly-ether-ether-ketone

PSO:

Particle swarm optimization

PTFE:

Poly tetra fluoro ethylene

Ra:

Average surface roughness

Rku:

Kurtosis of surface roughness distribution

Rq:

Root-mean-square roughness

Rt:

Maximum height of the profile

Rsm:

Mean width of profile elements

Rz:

Distance between the highest peak and the deepest valley

RIM:

Reference ideal method

SD:

Standard deviation

SR:

Surface roughness

TOPSIS:

Technique for order of preference by similarity to ideal solution

WASPAS:

Weighted aggregated sum product assessment

WSM:

Weighted sum method

VIKOR:

Vlsekriterijumska optimizacija I kompromisno resenje

References

  1. Davim JP (2008) Machining: fundamentals and recent advances. Springer Science & Business Media, New York

    Google Scholar 

  2. Trung DD, Tien DH, Nguyen VCC, Nguyen NT (2020) Surface roughness prediction in CNC hole turning of 3X13 steel using support vector machine algorithm. Tribol Ind 42(4):597–607

    Article  Google Scholar 

  3. Divya C, Raju LS, Singaravel B (2021) Application of MCDM methods for process parameter optimization in turning process—a review. In: Narasimham GSVL, Babu AV, Reddy SS, Dhanasekaran R (eds) Recent trends in mechanical engineering. Springer, Singapore, pp 199–207

    Chapter  Google Scholar 

  4. Pawar K, Wayal V, Jadhav S (2016) Optimization of parameters in CNC turning operation: a review. Int J Adv Res Innov Ideas Educ 2:290–297

    Google Scholar 

  5. Rana PB, Patel JL, Lalwani DI (2019) Parametric optimization of turning process using evolutionary optimization techniques—a review. In: Bansal JC et al (eds) Soft computing for problem solving, advances in intelligent systems and computing, vol 817. Springer, Singapore, pp 165–180

    Chapter  Google Scholar 

  6. Kurzekar NS, Tufail MS (2016) A review on optimization of drilling process parameters of AISI 304 austenite stainless steel by using response surface methodology. Int J Eng Dev Res 4:402–405

    Google Scholar 

  7. Subramanian JS, Baskar N, Ganesan M, Padmanaban MRA, Hariharan B, Arunagirinathan R, Kavin PR, Hariharan S (2018) Study on drilling process parameters - Review. Int J Eng Res Technol 6:1–7

    Google Scholar 

  8. Pavan Kumar N, Vara Prasad VLK, Radha Krishna K (2018) A review on optimization of milling process parameters. Int J Creat ResThoughts 6:1205–1218

    Google Scholar 

  9. Patel NS, Parihar PL, Makwana JS (2021) Parametric optimization to improve the machining process by using Taguchi method: a review. Mater Today Proc 47:2709–2714

    Article  Google Scholar 

  10. Aruldoss M, Lakshmi TM, Venkatesan VR (2013) A survey on multi criteria decision making methods and its applications. Am J Inf Sys 1(1):31–43

    Google Scholar 

  11. Miller DW, Starr MK (1969) Executive Decisions and Operations Research. Prentice-Hall Inc, Englewood Cliffs, New Jersey

    Google Scholar 

  12. Zavadskas EK, Turskis Z, Antucheviciene J, Zakarevicius A (2012) Optimization of weighted aggregated sum product assessment. Electron Electr Eng 122(6):3–6

    Google Scholar 

  13. Chakraborty S, Zavadskas EK (2014) Applications of WASPAS method in manufacturing decision making. Informatica 25(1):1–20

    Article  Google Scholar 

  14. Brauers WKM, Zavadskas EK (2009) Robustness of the multi-objective MOORA method with a test for the facilities sector. Technol Econ Dev Econ: Balt J Sustainability 15:352–375

    Article  Google Scholar 

  15. Chakraborty S (2011) Applications of the MOORA method for decision making in manufacturing environment. Int J Adv Manuf Technol 54:1155–1166

    Article  Google Scholar 

  16. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281

    Article  MathSciNet  MATH  Google Scholar 

  17. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill Company, New York

    MATH  Google Scholar 

  18. Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  19. Shukla A, Agarwal P, Rana RS, Purohit R (2017) Applications of TOPSIS algorithm on various manufacturing processes: a review. Mater Today Proc 4:5320–5329

    Article  Google Scholar 

  20. Keshavarz GM, Zavadskas EK, Olfat L, Turskis Z (2015) Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 26(3):435–451

    Article  Google Scholar 

  21. Zavadskas EK, Turskis Z (2010) A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technol Econ Dev Econ 16(2):159–172

    Article  Google Scholar 

  22. Zavadskas EK, Kaklauskas A, Turskis Z, Tamošaitien J (2008) Selection of the effective dwelling house walls by applying attributes values determined at intervals. J Civ Eng Manag 14:85–93

    Article  Google Scholar 

  23. Opricovic S, Tzeng GH (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156(2):445–455

    Article  MATH  Google Scholar 

  24. Deng H (2007) A similarity-based approach to ranking multicriteria alternatives. In: Proc of the international conference on intelligent computing. Lecture notes in artificial intelligence, vol 4682, pp 253–262.

  25. Kuo Y, Yang T, Huang G-W (2008) The use of grey relational analysis in solving multiple attribute decision-making problems. Comput Ind Eng 55:80–93

    Article  Google Scholar 

  26. Rao RV (2006) A material selection model using graph theory and matrix approach. Mat Sci Eng A 431:248–255

    Article  Google Scholar 

  27. Maniya K, Bhatt MG (2010) A selection of material using a novel type decision-making method: preference selection index method. Mater Des 31:1785–1789

    Article  Google Scholar 

  28. Pamučar D, Ćirovic G (2015) The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC). Expert Syst Appl 42(6):3016–3028

    Article  Google Scholar 

  29. Ghorabaee MK, Zavadskas EK, Turskis Z, Antucheviciene J (2016) A new combinative distance-based assessment (CODAS) method for multi-criteria decision making. Econ Comput Econ Cybern Stud Res 50(3):25–44

    Google Scholar 

  30. Pamučar D, Lukovac V, Božanić D, Komazec N (2018) Multi-criteria FUCOM-MAIRCA model for the evaluation of level crossings: case study in the republic of Serbia. Oper Res Eng Sci Theory Appl 1(1):108–129

    Article  Google Scholar 

  31. Stević Ž, Pamučar D, Puška A, Chatterjee P (2020) Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Comput Ind Eng 140:106231

    Article  Google Scholar 

  32. Rezaei J (2015) Best-worst multi-criteria decision-making method. Omega 53:49–57

    Article  Google Scholar 

  33. Pamučar D, Stević Ž, Sremac S (2018) A new model for determining weight coefficients of criteria in MCDM models: full consistency method (FUCOM). Symmetry 10:393

    Article  Google Scholar 

  34. Shannon CE (2001) A mathematical theory of communication. ACM Mob Comput Commun Rev 5:3–55

    Article  Google Scholar 

  35. Diakoulaki D, Mavrotas G, Papayannakis L (1995) Determining objective weights in multiple criteria problems: the CRITIC method. Comput Oper Res 22(1):763–770

    Article  MATH  Google Scholar 

  36. Zadeh L (1965) Fuzzy sets. Inf. Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  37. Kushwaha DK, Panchal D, Sachdeva A (2020) Risk analysis of cutting system under intuitionistic fuzzy environment. Rep Mech Eng 1:162–173

    Article  Google Scholar 

  38. Stojić G, Stević Ž, Antuchevičienė J, Pamučar D, Vasiljević M (2018) A novel rough WASPAS approach for supplier selection in a company manufacturing PVC carpentry products. Information 9:121

    Article  Google Scholar 

  39. Pamučar D, Stević Z, Zavadskas EK (2018) Integration of interval rough AHP and interval rough MABAC methods for evaluating university web pages. Appl Soft Comput 67:141–163

    Article  Google Scholar 

  40. Chattopadhyay R, Chakraborty S, Chakraborty S (2020) An integrated D-MARCOS method for supplier selection in an iron and steel industry. Decis Mak Appl Manag Eng 3:49–69

    Article  Google Scholar 

  41. Zolfani SH, Torkayesh AE, Bazrafshan R (2021) Vision-based weighting system (VIWES) in prospective MADM. Oper Res Eng Sci Theory Appl 4:140–150

    Google Scholar 

  42. Date PT, Waghmare SN, Shirpurkar PP (2019) Optimization of turning process. Educreation Publishing, India

    Google Scholar 

  43. Rao CJ, Nageswara Rao D, Srihari P (2013) Influence of cutting parameters on cutting force and surface finish in turning operation. Procedia Eng 64:1405–1415

    Article  Google Scholar 

  44. Lin CL (2004) Use of the Taguchi method and grey relational analysis to optimize turning operations with multiple performance characteristics. Mater Manuf Process 19(2):209–220

    Article  Google Scholar 

  45. Lan T-S (2009) Taguchi optimization of multi-objective CNC turning using TOPSIS. Inf Technol J 8(6):917–922

    Article  Google Scholar 

  46. Tzeng C-J, Lin Y-H, Yang Y-K, Jeng M-C (2009) Optimization of turning operations with multiple performance characteristics using the Taguchi method and grey relational analysis. J Mater Process Technol 209:2753–2759

    Article  Google Scholar 

  47. Asokan P, Senthilkumaar JS (2010) Intelligent selection of machining parameters in turning of Inconel-718 using multi objective optimisation coupled with MADM. Int J Mach Mach Mater 8(1/2):209–225

    Google Scholar 

  48. Pawade RS, Joshi SS (2011) Multi-objective optimization of surface roughness and cutting forces in high-speed turning of Inconel 718 using Taguchi grey relational analysis (TGRA). Int J Adv Manuf Technol 56:47–62

    Article  Google Scholar 

  49. Singh A, Datta S, Mahapatra SS (2011) Application of TOPSIS in the Taguchi method for optimal machining parameter selection. J Manuf Sci Prod 11:49–60

    Google Scholar 

  50. Kumar R, Kumar R, Soni G, Chhabra S (2013) Optimization of process parameters during CNC turning by using AHP & VIKOR method. Int J Eng Res Technol 2(12):3478–3480

    Google Scholar 

  51. Thirumalai R, Senthilkumaar JS (2013) Multi-criteria decision making in the selection of machining parameters for Inconel 718. J Mech Sci Technol 27(4):1109–1116

    Article  Google Scholar 

  52. Parida AK, Routara BC (2014) Multiresponse optimization of process parameters in turning of GFRP using TOPSIS method. Int Sch Res Notices. https://doi.org/10.1155/2014/905828

    Article  Google Scholar 

  53. Koyee RD, Heisela U, Eisseler R, Schmauder S (2014) Modeling and optimization of turning duplex stainless steels. J Manuf Process 16:451–467

    Article  Google Scholar 

  54. Koyee RD, Eisseler R, Schmauder S (2014) Application of Taguchi coupled fuzzy multi attribute decision making (FMADM) for optimizing surface quality in turning austenitic and duplex stainless steels. Measurement 58:375–386

    Article  Google Scholar 

  55. Senthilkumar N, Tamizharasan T, Anandakrishnan V (2014) A hybrid Taguchi-grey relational technique and cuckoo search algorithm for multi-criteria optimization in hard turning of AISI D3 steel. J Adv Eng Res 1(1):16–31

    Google Scholar 

  56. Singaravel B, Selvaraj T (2015) Optimization of machining parameters in turning operation using combined TOPSIS and AHP method. Tehnički Vjesnik 22(6):1475–1480

    Google Scholar 

  57. Gok A (2015) A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA. Measurement 70:100–109

    Article  Google Scholar 

  58. Saha A, Majumder H (2016) Multi criteria selection of optimal machining parameter in turning operation using comprehensive grey complex proportional assessment method for ASTM A36. Int J Eng Res Afr 23:24–32

    Article  Google Scholar 

  59. Rao CM, Venkatasubbaiah K (2016) Application of MCDM approach-TOPSIS for the multi-objective optimization problem. Int J Grid Distrib Comput 9(10):17–32

    Article  Google Scholar 

  60. Palanisamy D, Senthil P (2016) Optimization of turning parameters of 15–5PH stainless steel using Taguchi based grey approach and TOPSIS. Arch Mech Eng LXII I(3):1–16

    Google Scholar 

  61. Ramesh S, Viswanathan R, Ambika S (2016) Measurement and optimization of surface roughness and tool wear via grey relational analysis, TOPSIS and RSA techniques. Measurement 78:63–72

    Article  Google Scholar 

  62. Singaravel B, Selvaraj T, Vinodh S (2016) Multi-objective optimization of turning parameters using the combined MOORA and entropy method. Trans Can Soc Mech Eng 40(1):101–111

    Article  Google Scholar 

  63. Khan A, Maity K, Jhodkar D (2020) An integrated fuzzy-MOORA method for the selection of optimal parametric combination in turning of commercially pure titanium. In: Gupta K, Gupta MK (eds) Optimization of manufacturing processes. Springer, Switzerland, pp 163–184

    Chapter  Google Scholar 

  64. Khan A, Maity K (2016) Novel MCDM approach for simultaneous optimization of some correlated machining parameters in turning of CP-titanium grade 2. Int J Eng Res Afr 22:94–111

    Article  Google Scholar 

  65. Park H-S, Nguyen T-T, Kim J-C (2016) An energy efficient turning process for hardened material with multi-criteria optimization. Trans Famena 40(1):1–14

    Google Scholar 

  66. Park H-S, Nguyen T-T, Dang X-P (2016) Multi-objective optimization of turning process of hardened material for energy efficiency. Int J Precis Eng Manuf 17(12):1623–1631

    Article  Google Scholar 

  67. Jogi BF, Tarekar M, Dhajekar RM, Pawade R (2016) Multi objective optimization using Taguchi grey relational analysis (GRA) for CNC turning of poly-ether-ether-ketone (PEEK) polymer. Polym Polym Compos 24(7):523–527

    Google Scholar 

  68. Panda A, Sahoo AK, Rout AK (2016) Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis: a case study. Decis Sci Lett 5:581–592

    Article  Google Scholar 

  69. Krishnaveni A, Jebakani D, Jeyakumar K, Pitchipoo P (2016) Turning parameters optimization using COPRAS-Taguchi technique. Int J Adv Eng Technol 7(2):463–468

    Google Scholar 

  70. Sofuoğlu MA, Arapoğlu RA, Orak S (2017) Multi objective optimization of turning operation using hybrid decision making analysis. Anadolu Univ J Sci Technol A Appl Sci Eng 18(3):595–610

    Google Scholar 

  71. Sofuoğlu MA, Orak S (2017) A novel hybrid multi criteria decision making model: application to turning operations. Int J Intell Syst Appl Eng 5(3):124–131

    Article  Google Scholar 

  72. Suresh RK, Krishnaiah G, Venkataramaiah P (2017) Selection of best novel MCDM method during turning of hardened AISI D3 tool steel under minimum quantity lubrication using bio-degradable oils as cutting fluids. Int J Appl Eng Res 12(19):8082–8091

    Google Scholar 

  73. Singaravel B, Selvaraj T (2017) Multi criteria optimisation using analytic hierarchy process in turning operation. Int J Mach Mach Mater 19(3):218–229

    Google Scholar 

  74. Khan A, Maity K (2017) Application of MCDM-based TOPSIS method for the selection of optimal process parameter in turning of pure titanium. Benchmarking Int J 24(7):2009–2021

    Article  Google Scholar 

  75. Balasubramaniyan S, Selvaraj T (2017) Application of integrated Taguchi and TOPSIS method for optimization of process parameters for dimensional accuracy in turning of EN25 steel. J Chin Inst Eng 40(4):267–274

    Article  Google Scholar 

  76. Sivasankar S, Singaravel B (2017) Optimization of turning process parameters using Vikor method in turning operation. Trans Innov Sci Technol 2(3):36–41

    Google Scholar 

  77. Kumar R, Bilga PS, Sehijpal Singh S (2017) Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation. J Clean Prod 164:45–57

    Article  Google Scholar 

  78. Palansamy A, Selvaraj T (2017) Optimization of turning parameters for surface integrity properties on Incoloy 800H superalloy using cryogenically treated CVD coated tool. Surf Rev Lett. https://doi.org/10.1142/S0218625X18501391

    Article  Google Scholar 

  79. Singaravel B, Prabhu Shankar D, Prasanna L (2018) Application of MCDM method for the selection of optimum process parameters in turning process. Mater Today Proc 5:13464–13471

    Article  Google Scholar 

  80. Nipanikar S, Sargade V, Guttedar R (2018) Optimization of process parameters through GRA, TOPSIS and RSA models. Int J Ind Eng Comput 9:137–154

    Google Scholar 

  81. Bhardwaj V, Gaur MK, Chaturvedi V, Agrawal S (2018) Optimization of machining parameters for nylon 6 composite in CNC lathe using PCA-Based TOPSIS. Int J Manuf Mater Process 4(1):36–47

    Google Scholar 

  82. Majumder H, Saha A (2018) Application of MCDM based hybrid optimization tool during turning of ASTM A588. Decis Sci Lett 7:143–156

    Article  Google Scholar 

  83. Mia M, Rifat A, Tanvir MF, Gupta MK, Hossain MJ, Goswami A (2018) Multi-objective optimization of chip-tool interaction parameters using grey-Taguchi method in MQL-assisted turning. Measurement 129:156–166

    Article  Google Scholar 

  84. Gupta MK, Sood Gurraj Singh G, Sharma VS (2018) Investigations of performance parameters in NFMQL assisted turning of titanium alloy using TOPSIS and particle swarm optimisation method. Int J Mater Prod Technol 57(4):299–321

    Article  Google Scholar 

  85. Balaji V, Ravi S, Naveen Chandran P (2018) Optimization on cryogenic CO2 machining parameters of AISI D2 steel using Taguchi based grey relational approach and TOPSIS. Int J Eng Technol 7(3):885–893

    Article  Google Scholar 

  86. Mandge V, Ganesh N, Patil H (2018) Multi criteria selection of optimal metal matrix composite machining process parameters. REST J Emerg Trends Model Manuf 4(3):76–82

    Google Scholar 

  87. Singh R, Singh J, Dogra DM, Randhawa JS (2019) Optimization of machining parameters under MQL turning of Ti-6Al-4V alloy with textured tool using multi-attribute decision-making methods. World J Eng 16(5):648–659

    Article  Google Scholar 

  88. Sathiya Narayanan N, Baskar N, Ganesan M, Jenarthanan MP, Praveen S (2019) Evaluation and optimization of surface roughness and metal removal rate through RSM, GRA, and TOPSIS techniques in turning PTFE polymers. In: Hiremath SS, Siva-Shanmugam N, Ramesh-Bapu BR (eds) Advances in manufacturing technology. Springer, Singapore, pp 595–606

    Google Scholar 

  89. Khan A, Maity K (2019) Application potential of combined fuzzy-TOPSIS approach in minimization of surface roughness, cutting force and tool wear during machining of CP-Ti grade II. Soft Comput 23:6667–6678

    Article  Google Scholar 

  90. Chakraborty S, Jana TK, Paul S (2019) On the application of multi criteria decision making technique for multi-response optimization of metal cutting process. Intell Decis Technol 1:1–15

    Google Scholar 

  91. Umamaheswararao P, Ranga Raju D, Suman KNS, Ravi Sankar B (2019) Optimizing cutting parameters in hard turning of AISI 52100 steel using topsis approach. J Mech Energy Eng 3(43):227–232

    Article  Google Scholar 

  92. Sahu AK, Sahu NK, Sahu AK, Rajput MS, Narang HK (2019) T-SAW methodology for parametric evaluation of surface integrity aspects in AlMg3 (AA5754) alloy: comparison with T-TOPSIS methodology. Measurement 132:309–323

    Article  Google Scholar 

  93. Sivaiah P, Uma B (2019) Multi objective optimization of sustainable turning process using Topsis method. Emerg Mater Res 8:1–11

    Google Scholar 

  94. Abhang LB, Iqbal M, Hameedullah M (2019) Optimization of machining process parameters using Moora method. Defect Diffus Forum 402:81–89

    Article  Google Scholar 

  95. Valic S, Cukor G, Jurkovic Z, Brezocnik M (2019) Multi-criteria optimization of turning of martensitic stainless steel for sustainability. Int J Simul Model 18(4):632–642

    Article  Google Scholar 

  96. Reddy VV, Krishna MG, Reddy KS (2019) Optimization of turning process parameters of Al7075 hybrid MMC’s composite using TOPSIS method. J Adv Res Dyn Control Syst 11(7):42–49

    Google Scholar 

  97. Sharma V (2020) Multi-objective optimization in hard turning of tool steel using integration of Taguchi & TOPSIS under wet conditions. Int J Eng Trends Technol 68(10):37–41

    Article  Google Scholar 

  98. Reddy VV (2020) Turning process parameters optimization of Al7075 hybrid MMC’s composite using TOPSIS method. Sigma J Eng Nat Sci 38(4):2043–2055

    Google Scholar 

  99. Ficko M, Begic-Hajdarevic D, Hadziabdic V, Klancnik S (2020) Multi-response optimisation of turning process parameters using GRA and TOPSIS methods. Int J Simul Model 19(4):547–558

    Article  Google Scholar 

  100. Mane SS, Mulla AM (2020) Relevant optimization method selection in turning of AISI D2 steel using cryogenic cooling. Int J Creat Res Thoughts 8(10):803–812

    Google Scholar 

  101. Jadhav PS, Mohanty CP, Hotta TK, Gupta M (2020) An optimal approach for improving the machinability of Nimonic C-263 superalloy during cryogenic assisted turning. J Manuf Process 58:693–705

    Article  Google Scholar 

  102. Karaaslan F, Şahinoğlu A (2020) Determination of ideal cutting conditions for maximum surface quality and minimum power consumption during hard turning of AISI 4140 steel using TOPSIS method based on fuzzy distance. Arab J Sci Eng 45:9145–9157

    Article  Google Scholar 

  103. Khan A, Maity K (2020) Estimation of optimal cutting conditions during machining of CP-Ti grade 2 in fuzzy-VIKOR context: A hybrid approach. Grey Syst Theory Appl 10(3):293–310

    Article  Google Scholar 

  104. Trung DD, Nguyen N-T, Duc DV (2021) Study on multi-objective optimization of the turning process of EN 10503 steel by combination of taguchi method and moora technique. EUREKA Phys Eng 2:52–65

    Article  Google Scholar 

  105. Solanki M, Jain A (2021) Optimization of material removal rate and surface roughness using Taguchi based multi-criteria decision making (MCDM) technique for turning of Al-6082. Proc Eng Sci 3(3):303–318

    Article  Google Scholar 

  106. Thirumalai R, Seenivasan M, Panneerselvam K (2021) Experimental investigation and multi response optimization of turning process parameters for Inconel 718 using TOPSIS approach. Mater Today Proc 45:467–472

    Article  Google Scholar 

  107. Sultana N, Dhar NR (2021) Hybrid GRA-PCA and modified weighted TOPSIS coupled with Taguchi for multi-response process parameter optimization in turning AISI 1040 steel. Arch Mech Eng 68(1):23–47

    Google Scholar 

  108. Jhodkar D, Khan A, Gupta K (2021) Fuzzy-MOORA based optimization of machining parameters for machinability enhancement of titanium. Math Model Eng Probl 8(2):189–198

    Article  Google Scholar 

  109. Kalyanakumar S, Chandy ST, Muhammed KTA, Rohith PS (2021) Multi-response optimization of machining parameters of turning operation with green environment in EN24T using grey relational analysis in Taguchi method. Mater Today Proc 45:6193–6197

    Article  Google Scholar 

  110. Reddy VV, Ananthram K, Karumuri S, Tesemma BG (2021) Turning process parameters optimization of Al7075 hybrid MMC’s using standard deviation method coupled with VIKOR. Int J Mech Eng 6(1):232–238

    Google Scholar 

  111. Tönshoff HK, Spintig W, König W, Neises A (1994) Machining of holes developments in drilling technology. CIRP Ann 43(2):551–561

    Article  Google Scholar 

  112. Abdullah A, Sapuan SM (2019) Hole-making and drilling technology for composites. Woodhead Publishing, USA

    Google Scholar 

  113. Huang M-F, Lin T-R (2004) Application of grey-Taguchi method to optimize drilling of aluminium alloy 6061 with multiple performance characteristics. Mater Sci Technol 20(4):528–532

    Article  Google Scholar 

  114. Tosun N (2006) Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis. Int J Adv Manuf Technol 28:450–455

    Article  Google Scholar 

  115. Haq AN, Marimuthu P, Jeyapaul R (2008) Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. Int J Adv Manuf Technol 37:250–255

    Article  Google Scholar 

  116. Rajmohan T, Palamikumar K, Kathirvel M (2012) Optimization of machining parameters in drilling hybrid aluminium metal matrix composites. Trans Nonferrous Met Soc China 22:1286–1297

    Article  Google Scholar 

  117. Palanikumar K, Latha B, Senthilkumar VS, Davim JP (2012) Analysis on drilling of glass fiber-reinforced polymer (GFRP) composites using grey relational analysis. Mater Manuf Process 27(3):297–305

    Article  Google Scholar 

  118. Sreenivasulu R, Rao CS (2012) Application of gray relational analysis for surface roughness and roundness error in drilling of Al 6061 alloy. Int J Lean Thinking 3(2):67–78

    Google Scholar 

  119. Taskesen A, Kutukde K (2013) Analysis and optimization of drilling parameters for tool wear and hole dimensional accuracy in B4C reinforced Al-alloy. Trans Nonferrous Met Soc China 23:2524–2536

    Article  Google Scholar 

  120. Prasanna J, Karunamoorthy L, Venkat Raman M, Prashanth S, Chordia DR (2014) Optimization of process parameters of small hole dry drilling in Ti-6Al-4V using Taguchi and grey relational analysis. Measurement 48:346–354

    Article  Google Scholar 

  121. Singh H, Kamboj A, Kumar S (2014) Multi response optimization in drilling Al6063/SiC/15% metal matrix composite. Int J Mech Mechatron Eng 8(4):309–314

    Google Scholar 

  122. Shakeel Ahmed L, Pradeep Kumar M (2016) Multiresponse optimization of cryogenic drilling on Ti-6Al-4V alloy using topsis method. J Mech Sci Technol 30(4):1835–1841

    Article  Google Scholar 

  123. Shunmugesh K, Panneerselvam K (2016) Optimization of process parameters in micro-drilling of carbon fiber reinforced polymer (CFRP) using Taguchi and grey relational analysis. Polym Polym Compos 24(7):499–506

    Google Scholar 

  124. Sheth S, George PM (2016) Experimental investigation, prediction and optimization of cylindricity and perpendicularity during drilling of WCB material using grey relational analysis. Precis Eng 45:33–43

    Article  Google Scholar 

  125. Bagus GW, Soepangkat BOP, Krisnanto I (2016) Multiple-performance optimization of drilling parameters and tool geometries in drilling GFRP composite stacks using Taguchi and grey relational analysis (GRA) method. ARPN J Eng Appl Sci 11(2):992–999

    Google Scholar 

  126. Subbaiah KV, Khan F, Suresh C (2017) Optimization of process parameters in CNC drilling of EN 36. SSRG Int J Mech Eng (Special issue) 213–221

  127. Shunmugesh K, Panneerselvam K (2017) Optimization of machining process parameters in drilling of CFRP using multi-objective Taguchi technique, TOPSIS and RSA techniques. Polym Polym Compos 25(3):185–192

    Google Scholar 

  128. Shunmugesh K, Pannerselvam K (2017) Optimization of drilling process parameters via Taguchi, TOPSIS and RSA techniques. Arch Metall Mater 62(3):1803–1812

    Article  Google Scholar 

  129. Padma P, Mayee MC (2018) Application of a multi-criteria-decision-making (MCDM) method of TOPSIS in drilling of AA6082. Int J Manag Technol Eng 8:1771–1781

    Google Scholar 

  130. Kulkarni S, Ramachandran M (2018) Multi criteria selection of optimal CFRP composites drilling process parameters. REST J Emerg Trends Model Manuf 4(4):102–106

    Google Scholar 

  131. Kamaraj M, Santhanakrishnan R, Muthu E (2018) Investigation of surface roughness and MRR in drilling of Al2O3 particle and sisal fibre reinforced epoxy composites using TOPSIS based Taguchi method. Mater Sci Eng 402:012095

    Google Scholar 

  132. Baby J, Shunmugesh K (2019) Optimization of glass fiber reinforced polymer (GFRP) using multi objective Taguchi function and TOPSIS. Mater Today Proc 11:952–960

    Article  Google Scholar 

  133. Bhat R, Mohan N, Sharma S, Shandilya M, Jayachandran K (2019) An integrated approach of CCD-TOPSIS-RSM for optimizing the marine grade GFRP drilling process parameters. Mater Today Proc 19:307–311

    Article  Google Scholar 

  134. Tran Q-P, Nguyen V-N, Huang S-C (2020) Drilling process on CFRP: Multi-criteria decision-making with entropy weight using grey-TOPSIS method. Appl Sci 10:7207

    Article  Google Scholar 

  135. Balasubramanian S, Asvath G, Sivam SPSS (2020) Application of multi criteria decision making of setting input parameters for drilled product quality of AlSi7Cu4. Mater Sci Eng 912:032082

    Google Scholar 

  136. Paramasivam SSSS, Durai K, Natarajan H (2020) Taguchi additive ratio assessment (ARAS) method in multi-criteria decision making: a case study for treated drill tools performance. Int J Mod Manuf Technol XI I(1):114–124

    Google Scholar 

  137. Gokulkumar S, Thyla PR, Arun Ramnath R, Karthi N (2020) Acoustical analysis and drilling process optimization of Camellia Sinensis/Ananas Comosus/GFRP/epoxy composites by TOPSIS for indoor applications. J Nat Fibers 18:2284–2301

    Article  Google Scholar 

  138. Varatharajulu M, Duraiselvam M, Kumar MB, Jayaprakash J, Baskar N (2021) Multi criteria decision making through TOPSIS and COPRAS on drilling parameters of magnesium AZ91. J Magnes Alloy. https://doi.org/10.1016/j.jma.2021.05.006

    Article  Google Scholar 

  139. Sur G, Erkan Ö (2021) Surface quality optimization of CFRP plates drilled with standard and step drill bits using Taguchi. TOPSIS and AHP method Eng Comput 38(5):2163–2187

    Google Scholar 

  140. Ekici E, Riza A, Uzun MC (2021) Multi-objective optimization of process parameters for drilling fiber-metal laminate using a hybrid GRA-PCA approach. FME Trans 49:356–366

    Article  Google Scholar 

  141. Varatharajulu M, Shahithya R, Jayaprakash G, Baskar N, Davim JP (2021) Evaluation of desirability function approach and grey relation analysis for modeling circularity, perpendicularity and cylindricity in drilling magnesium AZ31. Proc Inst Mech Eng E J Process Mech Eng 235(2):238–248

    Article  Google Scholar 

  142. Ramirez M (2015) Milling: fundamentals. Nova Science Publishers, India, Processes and Technologies

    Google Scholar 

  143. Kopac J, Krajnik P (2007) Robust design of flank milling parameters based on grey-Taguchi method. J Mater Process Technol 191:400–403

    Article  Google Scholar 

  144. Chang C-K, Lu HS (2007) Design optimization of cutting parameters for side milling operations with multiple performance characteristics. Int J Adv Manuf Technol 32:18–26

    Article  Google Scholar 

  145. Tsao CC (2009) Grey-Taguchi method to optimize the milling parameters of aluminum alloy. Int J Adv Manuf Technol 40:41–48

    Article  Google Scholar 

  146. Lu HS, Chang CK, Hwang NC, Chung CT (2009) Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling. J Mater Process Technol 209:3808–3817

    Article  Google Scholar 

  147. Moshat S, Datta S, Bandyopadhyay A, Pal PK (2010) Parametric optimization of CNC end milling using entropy measurement technique combined with grey-Taguchi method. Int J Eng Sci Technol 2(2):1–12

    Article  Google Scholar 

  148. Tosun N, Pihtili H (2010) Gray relational analysis of performance characteristics in MQL milling of 7075 Al alloy. Int J Adv Manuf Technol 46:509–515

    Article  Google Scholar 

  149. Gadakh VS (2011) Application of MOORA method for parametric optimization of milling process. Int J Appl Eng Res 1(4):743–758

    Google Scholar 

  150. Gadakh VS, Shinde VB (2011) Selection of cutting parameters in side milling operation using graph theory and matrix approach. Int J Adv Manuf Technol 56:857–863

    Article  Google Scholar 

  151. Sundara Murthy K, Rajendran I (2012) Optimization of end milling parameters under minimum quantity lubrication using principal component analysis and grey relational analysis. J Braz Soc Mech Sci Eng 34(3):253–261

    Article  Google Scholar 

  152. Fu T, Zhao J, Liu W (2012) Multi-objective optimization of cutting parameters in high-speed milling based on grey relational analysis coupled with principal component analysis. Front Mech Eng 7(4):445–452

    Article  Google Scholar 

  153. Kuram E, Ozcelik B (2013) Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill. Measurement 46:1849–1864

    Article  Google Scholar 

  154. Maiyar LM, Ramanujam R, Venkatesan K, Jeraldd J (2013) Optimization of machining parameters for end milling of Inconel 718 super alloy using Taguchi based grey relational analysis. Procedia Eng 64:1276–1282

    Article  Google Scholar 

  155. Dubey A, Pathak D, Chandra N, Mishra AN, Davis R (2014) A parametric design study of end milling operation using grey based Taguchi method. Int J Emerg Technol Adv Eng 4(4):1140–1146

    Google Scholar 

  156. Shi K, Zhang D, Ren J, Yao C, Yuan Y (2014) Multiobjective optimization of surface integrity in milling TB6 alloy based on Taguchi-grey relational analysis. Adv Mech Eng /. https://doi.org/10.1155/2014/280313

    Article  Google Scholar 

  157. Najiha MS, Rahman MM, Kadirgama K (2015) Experimental investigation and optimization of minimum quantity lubrication for machining of AA6061-T6. Int J Automot Mech Eng 11:2722–2737

    Google Scholar 

  158. Pradhan MK, Meena M, Sen S, Singh A (2015) Multi-objective optimization in end milling of Al-6061 using Taguchi based G-PCA. Int J Mech Mechatron Eng 9(6):1136–1142

    Google Scholar 

  159. Shi K, Zhang D, Ren J (2015) Optimization of process parameters for surface roughness and microhardness in dry milling of magnesium alloy using Taguchi with grey relational analysis. Int J Adv Manuf Technol 81:645–651

    Article  Google Scholar 

  160. Du S, Chen M, **e L, Zhu Z, Wang X (2016) Optimization of process parameters in the high-speed milling of titanium alloy TB17 for surface integrity by the Taguchi-grey relational analysis method. Adv Mech Eng 8(10):1–12

    Article  Google Scholar 

  161. Ren J, Zhou J, Zeng J (2016) Analysis and optimization of cutter geometric parameters for surface integrity in milling titanium alloy using a modified grey-Taguchi method. Proc Inst Mech Eng B J Eng Manuf 230(11):2114–2128

    Article  Google Scholar 

  162. Jomaa W, Lévesque J, Bocher P, Divialle A, Gakwaya A (2017) Optimization study of dry peripheral milling process for improving aeronautical part integrity using grey relational analysis. Int J Adv Manuf Technol 91:931–942

    Article  Google Scholar 

  163. Gopal PM, Soorya Prakash K (2018) Minimization of cutting force, temperature and surface roughness through GRA, TOPSIS and Taguchi techniques in end milling of Mg hybrid MMC. Measurement 116:178–192

    Article  Google Scholar 

  164. Parvez W, Kumar V (2018) Multi response optimization using gray relation analysis for milling zirconia ceramic material. J Emerg Technol Innov Res 5(8):523–528

    Google Scholar 

  165. Khan AM, Jamil AM, Salonitis K, Sarfraz S, Zhao W, He N, Mia M, Zhao GL (2019) Multi-objective optimization of energy consumption and surface quality in nanofluid SQCL assisted face milling. Energies 12:710

    Article  Google Scholar 

  166. Zeelanbasha N, Senthil V, Mahesh G (2020) A hybrid approach of NSGA-II and TOPSIS for minimising vibration and surface roughness in machining process. Int J Oper Res 38(2):221–254

    Article  Google Scholar 

  167. Kumar J, Verma RK (2020) Experimental investigations and multiple criteria optimization during milling of graphene oxide (GO) doped epoxy/CFRP composites using TOPSIS-AHP hybrid module. FME Trans 48:628–635

    Article  Google Scholar 

  168. Kumar MB, Sathiya P, Parameshwaran R (2020) Parameters optimization for end milling of Al7075-ZrO2-C metal matrix composites using GRA and ANOVA. Trans Indian Inst Met 73(11):2931–2946

    Article  Google Scholar 

  169. Djordje C et al (2020) Multi-objective optimization of hard milling using Taguchi based grey relational analysis. Technical Gazette 27(2):513–519

    Google Scholar 

  170. Wang Z, Li L (2021) Optimization of process parameters for surface roughness and tool wear in milling TC17 alloy using Taguchi with grey relational analysis. Adv Mech Eng 13(2):1–8

    Article  Google Scholar 

  171. Abdulshahed AM, Badi I (2018) Prediction and control of surface roughness for end milling process using ANFIS. Oper Res Eng Sci Theory Appli 1:1–12

    Google Scholar 

  172. Chakraborty S, Kumar V (2021) Development of an intelligent decision model for non-traditional machining processes. Decis Mak Appl Manag Eng 4:194–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Chakraborty.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Chakraborty, S. A Sco** Review on the Applications of MCDM Techniques for Parametric Optimization of Machining Processes. Arch Computat Methods Eng 29, 4165–4186 (2022). https://doi.org/10.1007/s11831-022-09731-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09731-w

Navigation