Log in

Algorithms and Strategies for Treatment of Large Deformation Frictional Contact in the Numerical Simulation of Deep Drawing Process

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper describes a fully implicit algorithm developed and optimized to simulate sheet metal forming processes. This algorithm was implemented in the in-house code DD3IMP. Attention is paid to the augmented lagrangian method adopted to treat the contact with friction problem. The global resolution of the coupled equilibrium and contact problem is performed in a single loop, with a static implicit iterative Newton-Raphson scheme. This demands particular attention in the contact search algorithm, which in this case adopts a parametric description of the tools. In order to highlight the adopted strategies a review of the state-of-the-art in sheet metal forming simulation is presented, with respect to models reliability and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Esche SK, Kinzel GL, Altan T (1997) Issues in convergence improvement for non-linear finite element programs. Int J Numer Methods Eng 40:4577–4594

    MATH  Google Scholar 

  2. Menezes LF, Teodosiu C (2000) Three dimensional numerical simulation of the deep drawing process using solid finite element. J Mater Process Technol 97:100–106

    Google Scholar 

  3. Oliveira MC, Alves JL, Menezes LF (2003) Improvement of a frictional contact algorithm for strongly curved contact problems. Int J Numer Methods Eng 58:2083–2101

    MathSciNet  MATH  Google Scholar 

  4. Alves JL, Oliveira MC, Menezes LF (2004) Springback evaluation with several phenomenological yield criteria. Mater Sci Forum 455–456:732–736

    Article  Google Scholar 

  5. Alves JL, Oliveira MC, Menezes LF, Bouvier S (2006) Influence of the yield criteria on the numerical results: the cross tool example. In: Juster N, Rosochowski A (eds) Proceedings of the ESAFORM’06, the 9th international ESAFORM conference on material forming, pp 887–890

  6. Alves JL, Oliveira MC, Menezes LF (2004) An advanced constitutive model in sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion. In: Glosh S et al. (eds) Proceedings of the NUMIFORM’04, materials processing and design: modelling, simulation and applications. American Institute of Physics, Melville, p 1645

    Google Scholar 

  7. Chaparro BM, Oliveira MC, Alves JL, Menezes LF (2004) Work hardening models and the numerical simulation of the deep drawing process. Mater Sci Forum 455–456:717–722

    Google Scholar 

  8. Bouvier S, Alves JL, Oliveira MC, Menezes LF (2005) Modelling of anisotropic work-hardening behaviour of metallic materials subjected to strain path changes. Comput Mater Sci 32:301–315

    Google Scholar 

  9. Oliveira MC, Alves JL, Chaparro BM, Menezes LF (2007) Study on the influence of work-hardening modeling in springback prediction. Int J Plast 23:516–543

    MATH  Google Scholar 

  10. Yoon JW, Yang DY, Chung K, Barlat F (1999) A general elastoplastic finite element formulation based on incremental deformation theory for planar anisotropy and its application to sheet metal forming. Int J Plast 15:35–67

    MATH  Google Scholar 

  11. Geng L, Wagoner RH (2002) Role of plastic anisotropy and its evolution on springback. Int J Mech Sci 44:123–148

    MATH  Google Scholar 

  12. Hu J, Jonas JJ, Ishikawa T (1998) FEM simulation of the forming of texture aluminium sheets. Mat Sci Eng A-Struct A256:51–59

    Google Scholar 

  13. Duchene L, Godinas A, Cescotto S, Habraken AM (2002) Texture evolution during deep drawing processes. J Mater Process Technol 125:110–118

    Google Scholar 

  14. Alart P (1993) Contact avec frottement. Mémoire d’habilitation à diriger des recherches, Laboratoire de Mécanique et Génie Civil, Université Montpellier II, France

  15. Pietrzak G, Curnier A (1999) Large deformation frictional contact mechanics: continuum formulation and augmented lagrangian treatment. Comput Methods Appl Math 177:351–381

    MathSciNet  MATH  Google Scholar 

  16. Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. Studies in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  17. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Math 92-3:353–375

    MathSciNet  Google Scholar 

  18. Simo JC, Laursen TA (1992) An augmented lagrangian treatment of contact problems involving friction. Comput Struct 42:97–116

    MathSciNet  MATH  Google Scholar 

  19. Cao HL (1990) Modélisation mécanique et simulation numérique de l’emboutissage. PhD thesis, Institut National Polytechnique de Grenoble, France

  20. Teodosiu C (1989) The plastic spin: microstructural origin and computational significance. In: Owen DRJ et al (eds) Proceedings of the 2nd international conference on computational plasticity. Barcelona, Spain

  21. Menezes LF (1995) Modelação tridimensional e simulação numérica dos processos de enformação por deformação plástica: aplicação à estampagem de chapas metálicas. PhD thesis, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Portugal

  22. Teodosiu C, Genevois P (1998) Modelling large deformation anisotropic plastic behaviour of mild steel sheet. In: Proceedings of the MECAMAT’98, international symposium on inelastic behaviour of solids: models and utilisation. Besançon, France, pp 211–224

  23. Sidoroff H (1981) Formulation elastoplastique en grandes déformations. Rapport GRECO 29

  24. Simo JC (1985) On the computational significance of the intermediate configuration and hyperelastic stress relations in finite deformation elastoplasticity. Mech Mater 4:439

    Google Scholar 

  25. Alves JL (2003) Simulação numérica do processo de estampagem de chapas metálicas: modelação mecânica e métodos numéricos. PhD thesis, Departamento de Engenharia Mecânica, Universidade do Minho, Portugal

  26. Heegaard JH, Curnier A (1993) An augmented lagrangian method for discrete large slip contact problems. Int J Numer Methods Eng 36:569–593

    MathSciNet  MATH  Google Scholar 

  27. Klarbring A (1986) A mathematics programming approach to three-dimensional contact problems with friction. Comput Methods Appl Math 58:175–200

    MathSciNet  MATH  Google Scholar 

  28. Hallquist JO, Goudreau GL, Benson DJ (1985) Sliding interfaces with contact-impact in large-scale lagrangian computations. Comput Methods Appl Math 51:107–137

    MathSciNet  MATH  Google Scholar 

  29. Heege A (1992) Simulation numerique 3D du contact avec frottement et application à la mise en forme. PhD thesis, Institut National Polythecnique de Grenoble, France

  30. Moreau JJ (1979) Application of convex analysis to some problems of dry friction. In: Zorski H (ed) Trends of pure mathematics applied to mechanics, vol II. Pitman, London

    Google Scholar 

  31. Laursen TA (1992) Formulation and treatment of frictional contact problems using finite elements. PhD thesis, Stanford University, USA

  32. Mijar AR, Arora JS (2000) Review of formulations for elastostatic frictional contact problems. Struct Multidiscipl Optim 20:167–189

    Google Scholar 

  33. Klarbring A (1995) Large displacement frictional contact: a continuum framework for finite element discretization. Eur J Mech A-Solids 14:237–253

    MathSciNet  MATH  Google Scholar 

  34. Kloosterman G, Van Damme RMJ, Van den Boogaard AH, Huétink J (2001) A geometrical based contact algorithm using a barrier method. Int J Numer Methods Eng 51:865–882

    MATH  Google Scholar 

  35. Tekkaya AE (2000) State of the art of simulation of sheet metal forming. J Mater Process Technol 103:14–22

    Google Scholar 

  36. Rojek J, Zienkiewicz OC, Oñate E, Postek E (2001) Advances in FE explicit formulation for simulation of metal forming processes. J Mater Process Technol 119:41–47

    Google Scholar 

  37. Finn MJ, Galbraith PC, Wu L, Hallquist JO, Lum L, Lin T-L (1995) Use of a coupled explicit implicit solver for calculating springback in automotive body panels. J Mater Process Technol 50:395–406

    Google Scholar 

  38. Bathe KJ (2004) On the state of finite element procedures for forming processes. In: Glosh S et al. (eds) Proceedings of the NUMIFORM’04, materials processing and design: modelling, simulation and applications. American Institute of Physics, Melville, p 34

    Google Scholar 

  39. Menezes LF, Teodosiu C, Makinouchi A (1991) 3-D solid elasto plastic elements for simulating sheet metal forming processes by the finite element method. In: FE simulation of 3D sheet metal forming processes in automotive industry, VDI Berichte Nr 894, pp 381–403

  40. Schönbach E, Glanzer G, Kubli W, Selig M (2004) Springback simulation: the last missing link for a complete forming simulation. In: Kergen R et al (eds) Proceedings of the IDDRG’04, international deep drawing research group conference, forming the future: global trends in sheet metal forming. Sildenfingen, Germany, pp 83–94

  41. Sriram S, Wagoner RH (2000) Adding bending stiffness to 3-D membrane FEM programs. Int J Mech Sci 42:1753–1782

    MATH  Google Scholar 

  42. Chapelle D, Bathe KJ (1998) Fundamental considerations for the finite element analysis of shell structures. Comput Struct 66:19–36

    MATH  Google Scholar 

  43. Kawka M, Makinouchi A (1995) Shell element formulation in the static explicit FEM code for the simulation of sheet metal forming. J Mater Process Technol 50:105–115

    Google Scholar 

  44. Alves JL, Menezes LF (2001) Application of tri-linear and tri-quadratic 3-D solid finite elements in sheet metal forming process simulations. In: Mori N (ed) Proceedings of the NUMIFORM’01, simulation of materials processing: theory, methods and applications, pp 639–644

  45. Kawka M, Kakita T, Makinouchi A (1998) Simulation of multi-steep sheet metal forming processes by a static explicit FEM code. J Mater Process Technol 80-81:54–59

    Google Scholar 

  46. Li KP, Carden WP, Wagoner RH (2002) Simulation of springback. Int J Mech Sci 44:103–122

    MATH  Google Scholar 

  47. Areias PMA, César de Sá JMA, Conceição António CA, Fernandes AA (2003) Analysis of 3D problems using a new enhanced strain hexahedral element. Int J Numer Methods Eng 58:1382–1637

    Google Scholar 

  48. Wang J, Wagoner RH (2005) A practical large-strain solid finite element for sheet forming. Int J Numer Methods Eng 63:473–501

    MATH  Google Scholar 

  49. Reese S (2005) On a physically stabilized one point finite element formulation for three-dimensional finite elastoplasticity. Comput Methods Appl Math 194:4685–4715

    MATH  Google Scholar 

  50. Péric D, Vaz M Jr, Owen DRJ (1999) On adaptative strategies for large deformations of elasto plastic solids at finite strains: computational issues and industrial applications. Comput Methods Appl Math 176:279–312

    MATH  Google Scholar 

  51. Meinders T (2000) Developments in numerical simulations of the real life deep drawing process. PhD thesis, University of Twente. Ponsen & Looijen Wageningen, Netherlands, ISBN 90-36514002

  52. Mc Meeking RM, Rice JR (1975) Finite element formulations for problems of large elastic plastic deformation. Int J Solids Struct 11:601–616

    Google Scholar 

  53. Yamada Y, Yoshimura N, Sakurai T (1968) Plastic stress strain matrix and its application for the solution of elastic plastic problems by the finite element method. Int J Mech Sci 10:343–354

    MATH  Google Scholar 

  54. Hughes TJR, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis. Int J Numer Methods Eng 15:1862–1867

    MathSciNet  MATH  Google Scholar 

  55. Simo JC, Taylor RL (1984) Consistent tangent operators for rate independent elastoplasticity. Comput Methods Appl Math 48:101–118

    Google Scholar 

  56. Hughes TJR (1980) Generalization of selective reduced integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng 15:1413–1418

    MATH  Google Scholar 

  57. Santos A (1993) Tool description and contact strategies used in the static explicit FEM code ITAS3D for simulation of 3-D sheet metal forming process. PhD thesis, University of Tokyo, Japan

  58. Santos A, Makinouchi A (1995) Contact Strategies to deal with different tool descriptions in static explicit FEM of 3-D sheet-metal forming simulation. J Mater Process Technol 50:277–291

    Google Scholar 

  59. Hallquist JO, Wainscott B, Schweizerhof K (1995) Improved simulation of thin-sheet metal forming using LS-DYNA3D on parallel computers. J Mater Process Technol 50:144–147

    Google Scholar 

  60. Lin J, Ball AA, Zheng JJ (2001) Approximating circular arcs by Bézier curves and its application to modelling tooling for FE forming simulations. Int J Mach Tools Manuf 41:703–717

    Google Scholar 

  61. Belytschko T, Lin JI (1987) A three-dimensional impact-penetration algorithm with erosion. Comput Struct 25:95–104

    MATH  Google Scholar 

  62. Zhong Z-H, Nilsson L (1994) Automatic contact searching algorithm for dynamic finite element analysis. Comput Struct 52:187–197

    MATH  Google Scholar 

  63. Bergman G, Oldenburg M (2004) A Finite element model for thermomechanical analysis of sheet metal forming. Int J Numer Methods Eng 59:1167–1186

    MATH  Google Scholar 

  64. **ng HL, Fujimoto T, Makinouchi A, Nikishkov GP (1998) Static-explicit FE modeling of 3-D large deformation multibody contact problems on parallel computer. In: Huétink J (ed) Simulation of materials processing: theory, methods and applications. Balkema, Rotterdam, pp 207–212

    Google Scholar 

  65. Wang F, Cheng J, Yao Z (2001) FFS contact searching algorithm for dynamic finite element analysis. Int J Numer Methods Eng 52:655–672

    MathSciNet  MATH  Google Scholar 

  66. Belytschko T, Neal MO (1991) Contact-impact by the pinball algorithm with penalty and lagrangian-methods. Int J Numer Methods Eng 31:547–572

    MATH  Google Scholar 

  67. Wang SP, Nakamachi E (1997) The inside-outside contact search algorithm for finite element analysis. Int J Numer Methods Eng 40:3665–3685

    MathSciNet  MATH  Google Scholar 

  68. El-Abbasi N, Bathe K-J (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Comput Struct 79:1473–1486

    Google Scholar 

  69. Zavarise G, Wriggers P (1999) A superlinear convergent augmented lagrangian procedure for contact problems. Eng Comput 16:88–119

    MATH  Google Scholar 

  70. Chabrand P, Chertier O, Dubois F (2001) Complementarity methods for multibody friction contact problems in finite deformation. Int J Numer Methods Eng 51:553–578

    MATH  Google Scholar 

  71. Simo JC, Wriggers P, Taylor RL (1985) A perturbed lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Math 50:163–180

    MathSciNet  MATH  Google Scholar 

  72. Belgacem FB, Hild P, Laborde P (1998) The Mortar finite element method for contact problems. Math Comput Model 28:253–271

    MathSciNet  Google Scholar 

  73. McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48:1525–1547

    MathSciNet  MATH  Google Scholar 

  74. Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Math 193:601–629

    MathSciNet  MATH  Google Scholar 

  75. Puso MA, Laursen TA (2002) A 3D contact smoothing method using Gregory patches. Int J Numer Methods Eng 54:1161–1194

    MathSciNet  MATH  Google Scholar 

  76. Al-Dojayli M, Meguid SA (2002) Accurate modeling of contact using cubic splines. Finite Elem Anal Des 38:337–352

    MATH  Google Scholar 

  77. El-Abbasi N, Meguid SA, Czekanski A (2001) On the modelling of smooth contact surfaces using cubic splines. Int J Numer Methods Eng 50:953–967

    MATH  Google Scholar 

  78. Wriggers P, Krstulovic-Opara L, Korelc J (2001) Smooth C1-interpolations for two-dimensional frictional problems. Int J Numer Methods Eng 51:1469–1495

    MathSciNet  MATH  Google Scholar 

  79. Stadler M, Holzapfel GA, Korelc J (2003) Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems. Int J Numer Methods Eng 57:2177–2203

    MATH  Google Scholar 

  80. Belytschko T, Daniel WJT, Ventura G (2002) A monolithic smoothing-gap algorithm for contact-impact based on the signed distance function. Int J Numer Methods Eng 55:101–125

    MathSciNet  MATH  Google Scholar 

  81. Kim T-J, Yang D-Y (2007) FE-analysis of sheet metal forming processes using continuous contact treatment. Int J Plast 23:544–560

    MATH  Google Scholar 

  82. Farin G (1993) Curves and surfaces for computer aided geometric design—a practical guide, 3rd edn. Academic, New York

    Google Scholar 

  83. Heege A, Alart P (1996) A frictional contact element for strongly curved contact problems. Int J Numer Methods Eng 39:165–184

    MathSciNet  MATH  Google Scholar 

  84. Xu W, Di S, Thomson P (2003) Rigid-plastic/rigid-viscoplastic FE simulation using linear programming for metal forming. Int J Numer Methods Eng 56:487–506

    MATH  Google Scholar 

  85. Luenberg DG (1984) Linear and nonlinear programming, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  86. Laursen TA, Oancea VG (1994) Automation and assessment of augmented lagrangian algorithms for frictional contact problems. J Appl Mech-T ASME 61:956–963

    Article  MATH  Google Scholar 

  87. Refaat MH, Meguid SA (1994) On the elastic solution of frictional contact problems using variational inequalities. Int J Mech Sci 36:329–342

    MATH  Google Scholar 

  88. Zhang HW, Xu WL, Di SL, Thomson PF (2002) Quadratic programming method in numerical simulation of metal forming process. Comput Methods Appl Math 191:5555–5578

    MATH  Google Scholar 

  89. Refaat MH, Meguid SA (1998) A new strategy for the solution of frictional contact problems. Int J Numer Methods Eng 43:1053–1068

    MATH  Google Scholar 

  90. Christensen PW, Klarbring A, Pang JS, Stromberg N (1998) Formulation and comparison of algorithms for frictional contact problems. Int J Numer Methods Eng 42:145–173

    MathSciNet  MATH  Google Scholar 

  91. Kloosterman G (2002) Contact methods in finite element simulations. PhD thesis, Netherlands Institute for Metals Research, University of Twente, Netherlands

  92. Nour-Omid B, Wriggers P (1987) A note on the optimum choice for penalty parameters. Commun Numer Methods Eng 3:518–585

    Google Scholar 

  93. Shanno DF, Breitfeld MG, Simantiraki EM (1995) Implementating barrier methods for nonlinear programming. Rutcor Research Report 39-95:1–14

    Google Scholar 

  94. Walter H (1999) Modelisation 3D par elements finites du contact avec frottement et del l’endommagement du beton: application a létude de fixations ancrees dans une structure de beton. PhD thesis, L’Institut National des Sciences Appliquées de Lyon, France

  95. Laursen TA, Maker BN (1995) An augmented lagrangian quasi-Newton solver for constrained nonlinear finite element applications. Int J Numer Methods Eng 38:3571–3590

    MATH  Google Scholar 

  96. Cheng X-L, Han W (2002) Inexact Uzawa algorithms for variational inequalities of the second kind. Reports on Computational Mathematics of the Numerical Computing Group at the University of Iowa

  97. Jones RE, Papadopoulos P (2001) A novel three-dimensional contact finite element based on smooth pressure interpolations. Int J Numer Methods Eng 51:791–811

    MathSciNet  MATH  Google Scholar 

  98. Zavarise G, Wriggers P, Schrefler BA (1998) A method for solving contact problems. Int J Numer Methods Eng 42:473–498

    MATH  Google Scholar 

  99. Bathe KJ, Bouzinov PA (1997) On the constraint function method for contact problems. Comput Struct 64:1069–1085

    MATH  Google Scholar 

  100. Kawka M, Bathe KJ (2001) A new effective and reliable implicit scheme for the simulation of sheet metal forming processes. In: Mori N (ed) Proceedings of the NUMIFORM’01, simulation of materials processing: theory, methods and applications, pp 615–619

  101. Belytschko T, Fleming M (1999) Smoothing, enrichment and contact in the element free Galerkin method. Comput Struct 71:173–195

    MathSciNet  Google Scholar 

  102. Kim NH, Choi KK, Chen JS, Park YH (2000) Meshless shape design sensitivity analysis and optimization for contact problem with friction. Comput Mech 25:157–168

    MATH  Google Scholar 

  103. Zhong ZH, Nilsson L (1996) A unified contact algorithm based on the territory concept. Comput Methods Appl Math 130:1–16

    MathSciNet  MATH  Google Scholar 

  104. Shanno DF, Breitfeld MG, Evangelia MS (1995) Implementating barrier methods for nonlinear programming. Rutcor Research Report 39-95, Rutgers University, 14

  105. Kloosterman G, Van Damme RMJ, Van den Boogaard AH, Huétink J (2001) A geometrical based contact algorithm using a barrier method. Int J Numer Methods Eng 51:865–882

    MATH  Google Scholar 

  106. Giannakopoulos AE (1989) The radial map** method for the integration of friction constitutive relations. Comput Struct 6:281–290

    Google Scholar 

  107. Ling W, Stolarski HK (1997) A contact algorithm for problems involving quadrilateral approximation of surface. Comput Struct 63:963–975

    MATH  Google Scholar 

  108. Ju SH, Stone JJ, Rowlands RE (1995) A new symmetric contact element stiffness matrix for frictional contact problems. Comput Struct 54:289–301

    MathSciNet  MATH  Google Scholar 

  109. Zavarise G, Wriggers P, Schrefler BA (1995) On augmented lagrangian algorithms for thermomechanical contact problems with friction. Int J Numer Methods Eng 38:2929–2949

    MATH  Google Scholar 

  110. Oliveira MC (2005) Algoritmos e estratégias de gestão do problema de contacto com atrito em grandes deformações: aplicação à estampagem de chapas metálicas. PhD thesis, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Portugal, ISBN 972-99204-7-8

  111. Auricchio F, Sacco E (1996) Augmented lagrangian finite elements for plate contact problems. Int J Numer Methods Eng 39:4141–4158

    MATH  Google Scholar 

  112. Alart P (1992) A simple contact algorithm applied to large sliding and anisotropic friction. In: Contac mechanics international symposium. Presses Polytechniques Romades, Lausanne

    Google Scholar 

  113. Knibloe JR, Wagoner RH (1989) Experimental investigation and finite-element modeling of hemispherically stretched steel sheet. Metall Trans A—Phys Metall Mater Sci 20:1509–1521

    Google Scholar 

  114. Fromentina S, Martiny M, Ferron G, Tourkic Z, Moreira LP, Ferran G (2001) Finite element simulations of sheet-metal forming processes for planar-anisotropic materials. Int J Mech Sci 43:1833–1852

    Google Scholar 

  115. Stupkiewicz S (2001) Extension of the node-to-segment contact element for surface-expansion-dependent contact laws. Int J Numer Methods Eng 50:739–759

    MATH  Google Scholar 

  116. Hughes DA, Weingarten LI, Dawson DB (1985) Numerical simulation and experimental observations of initial friction transients. In: Shen SF, Dawson PR (eds) Simulation of materials processing: theory, methods and applications. Balkema, Rotterdam, pp 265–270

    Google Scholar 

  117. Haar R (1996) Friction in sheet metal forming: the influence of (local) contact conditions and deformation. PhD thesis, University of Twente, Netherlands

  118. Martinet F, Chabrand P (2000) Application of ALE finite elements method to a lubricated friction model in sheet metal forming. Int J Solids Struct 37:4005–4031

    MATH  Google Scholar 

  119. Magny C (2002) Lois de frottement évolutives destinées à la simulation numérique de l’emboutissage. Rev Metall 145:156–2002

    Google Scholar 

  120. Agelet de Saracibar C, Chiumenti M (1999) On the numerical modeling of frictional wear design. Comput Methods Appl Math 177:401–426

    MathSciNet  MATH  Google Scholar 

  121. Heege A, Alart P, Oñate E (1995) Numerical modelling and simulation of frictional contact using a generalised Coulomb law. Eng Comput 12:641–656

    Google Scholar 

  122. Laursen TA, Oancea VG (1997) On the constitutive modeling and finite element computation of rate-depedent frictional sliding in large deformation. Comput Methods Appl Math 143:197–227

    MathSciNet  MATH  Google Scholar 

  123. Behrens A, Schafstall H (1998) 2D and 3D simulation of complex multistage forging processes by use of adaptive friction coefficient. J Mater Process Technol 80-81:298–303

    Google Scholar 

  124. Bandeira AA, Wriggers P, Pimenta PM (2004) Numerical derivation of contact mechanics interface laws using a finite element approach for large 3D deformation. Int J Numer Methods Eng 59:173–195

    MATH  Google Scholar 

  125. Levaillant C, Chenot JL (1992) Physical modelling and numerical prediction of defects in sheet metal forming. J Mater Process Technol 32:383–397

    Google Scholar 

  126. Wouters P, Daniel D, Magny C (2002) Selection and identification of friction models for the 3DS materials-identification of the frictional behaviour. Digital Die Design Systems (3DS) IMS 1999 000051, Work Package 3, Task 1

  127. Areias PMA, César de Sá JM, Conceição António CA (2004) Algorithms for the analysis of 3D finite strain contact problems. Int J Numer Methods Eng 61:1107–1151

    MATH  Google Scholar 

  128. Baptista AJ (2007) Modelação mecânica e simulação numérica do processo de estampagem multi-etapas: aplicação ao processo de estampagem de chapas soldadas. PhD thesis, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Portugal, ISBN 972-8954-08-5

  129. Tanner JA (1996) Computational methods for frictional contact with applications to the space shuttle orbiter nose-gear tire: development of frictional contact algorithm. NASA Technical Paper 3574

  130. Oliveira MC, Alves JL, Menezes LF (2006) Optimizing the description of forming tools with Bézier surfaces in the numerical simulation of the deep drawing process. In: Mota Soares CA et al. (eds) Proceedings of the ECCM’06, III European conference on computational mechanics: solids, structures and coupled problems in engineering. Springer, Dordrecht, p 332

    Google Scholar 

  131. Laboratoire des Propriétés Mécaniques et Thermodynamiques des Matériaux (2001) Selection and identification of elastoplastic models for the materials used in the benchmarks. Digital Die Design Systems (3DS) IMS 1999 000051, Work Package 3, Task1, 18-Month Progress Report, University Paris 13

  132. Rohleder M, Roll K, Menezes LF, Oliveira MC, Andersson A, Krantz F (2002) Standardization of input output data for benchmark tests. Digital Die Design Systems (3DS) IMS 1999 000051, Work Package 2, Task 3

  133. Digital Die Design Systems (3DS) IMS 1999 000051 (2004) Final Technical Report

  134. Oliveira MC, Alves JL, Menezes LF (2003) One step springback strategies in sheet metal forming. In: Owen DRJ et al. (eds) Proceedings of the COMPLAS’02. International Center for Numerical Methods in Engineering, Barcelona, p 87

    Google Scholar 

  135. Kase K, Makinouchi A, Nakagawa T, Suzuki H, Kimura F (1999) Shape error evaluation method of free-form surfaces. Comput Aided Des 31:495–505

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, M.C., Alves, J.L. & Menezes, L.F. Algorithms and Strategies for Treatment of Large Deformation Frictional Contact in the Numerical Simulation of Deep Drawing Process. Arch Computat Methods Eng 15, 113–162 (2008). https://doi.org/10.1007/s11831-008-9018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-008-9018-x

Keywords

Navigation