Log in

Design, Characterization and Performance of the Modified Chitosan–Alumina Nanocomposites for the Adsorption of Hydroquinone and Arsenic (V) Ions

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to prepare the well-dispersed modified chitosan–alumina (CA) with size less than 50 nm by the facile synthesis method to evaluate the adsorption of hydroquinone and arsenic (V) ions in the aqueous solutions. Derived gamma-alumina from boehmite was coated and modified by chitosan and sodium dodecyl sulfate (SDS) and salicylic acid, respectively. The characterization of nanocomposites was studied by XRD, FTIR, FESEM, EDX TEM and BET analysis. The chitosan and SDS phases were detected in the structure of the adsorbent as confirmed by XRD achievements. A quadratic polynomial model was developed to describe the effect of the operating parameters including pH, temperature and initial concentration on the adsorption capacity of the prepared sample while the experimental data were designed by a response surface method (RSM). The maximum adsorption capacity for the best adsorbent named CSAS3 was measured to be 86.95 and 95.24 mg/g for HQ and As (V) ions by employing linear Langmuir equation, respectively. The kinetic study indicated that the experimental data were in an appropriate matching with the linearized pseudo-quadratic kinetic equation (R2 = 0.999). The results showed the successful removal of hydroquinone and arsenic ions form the aqueous after 5 consecutive cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.K. Abugazleh, B. Rougeau, H. Ali, Adsorption of catechol and hydroquinone on titanium oxide and iron (iii) oxide. J. Environ. Chem. Eng. 8, 104180 (2020)

    CAS  Google Scholar 

  2. M.A. Ahghari, M.R. Ahghari, M. Kamalzare, A. Maleki, Design, synthesis, and characterization of novel eco-friendly chitosan-agio3 bionanocomposite and study its antibacterial activity. Sci. Rep. 12, 10491 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. F. AkbarBandari, M. Zabihi, E. Fatehifar, Remarkable adsorption of hydroquinone as an anion contaminant by using the magnetic supported bimetallic (nicu-mof@ mac) nanocomposites in aqueous solutions. Environ. Sci. Pollut. Res. 28, 69272 (2021)

    CAS  Google Scholar 

  4. M. Al-Yaari, T.H. Aldhyani, S. Rushd, Prediction of arsenic removal from contaminated water using artificial neural network model. Appl. Sci. 12, 999 (2022)

    CAS  Google Scholar 

  5. S. Alka, S. Shahir, N. Ibrahim, M.J. Ndejiko, D.-V.N. Vo, F. Abd Manan, Arsenic removal technologies and future trends: a mini review. J. Clean. Prod. 278, 123805 (2021)

    CAS  Google Scholar 

  6. L.A. Amola, T. Kamgaing, R.F. Tiegam Tagne, C.D. Atemkeng, I.-H.T. Kuete, S.G. Anagho, Optimized removal of hydroquinone and resorcinol by activated carbon based on shea residue (vitellaria paradoxa): thermodynamics, adsorption mechanism, nonlinear kinetics, and isotherms. J. Chem. 2022, 1 (2022)

    Google Scholar 

  7. F. Amri, S. Husseinsyah, K. Hussin, Effect of sodium dodecyl sulfate on mechanical and thermal properties of polypropylene/chitosan composites. J. Thermoplast. Compos. Mater. 26, 878 (2013)

    Google Scholar 

  8. S. Ashraf, A. Siddiqa, S. Shahida, S. Qaisar, Titanium-based nanocomposite materials for arsenic removal from water: a review. Heliyon 5, e01577 (2019)

    PubMed  PubMed Central  Google Scholar 

  9. N. Assaad, G. Sabeh, M. Hmadeh, Defect control in zr-based metal–organic framework nanoparticles for arsenic removal from water. ACS Appl. Nano Mater. 3, 8997 (2020)

    CAS  Google Scholar 

  10. R.E.K. Billah, M.A. Islam, H. Lgaz, E.C. Lima, Y. Abdellaoui, Y. Rakhila, O. Goudali, H. Majdoubi, A.A. Alrashdi, M. Agunaou, Shellfish waste-derived mesoporous chitosan for impressive removal of arsenic (v) from aqueous solutions: a combined experimental and computational approach. Arab. J. Chem. 15, 104123 (2022)

    Google Scholar 

  11. J.C. Burillo, L. Ballinas, G. Burillo, E. Guerrero-Lestarjette, D. Lardizabal-Gutierrez, H. Silva-Hidalgo, Chitosan hydrogel synthesis to remove arsenic and fluoride ions from groundwater. J. Hazard. Mater. 417, 126070 (2021)

    CAS  PubMed  Google Scholar 

  12. S. Chatterjee, H.N. Tran, O.-B. Godfred, S.H. Woo, Supersorption capacity of anionic dye by newer chitosan hydrogel capsules via green surfactant exchange method. ACS Sustain. Chem. Eng. 6, 3604 (2018)

    CAS  Google Scholar 

  13. T.S. Choong, T. Chuah, Y. Robiah, F.G. Koay, I. Azni, Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217, 139 (2007)

    CAS  Google Scholar 

  14. K.D. Dobson, A.J. McQuillan, In situ infrared spectroscopic analysis of the adsorption of aliphatic carboxylic acids to Tio2, Zro2, Al2O3, and Ta2O5 from aqueous solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 55, 1395 (1999)

    Google Scholar 

  15. H. Ebadollahzadeh, M. Zabihi, Competitive adsorption of methylene blue and pb (ii) ions on the nano-magnetic activated carbon and alumina. Mater. Chem. Phys. 248, 122893 (2020)

    CAS  Google Scholar 

  16. A. El-araby, L. El Ghadraoui, F. Errachidi, Usage of biological chitosan against the contamination of post-harvest treatment of strawberries by Aspergillus niger. Front. Sustain. Food Syst. 6, 881434 (2022)

    Google Scholar 

  17. M. Gallegos-Garcia, K. Ramírez-Muñiz, S. Song, Arsenic removal from water by adsorption using iron oxide minerals as adsorbents: a review. Miner. Process. Extr. Metall. Rev. 33, 301 (2012)

    CAS  Google Scholar 

  18. M.R. Gandhi, G. Kousalya, N. Viswanathan, S. Meenakshi, Sorption behaviour of copper on chemically modified chitosan beads from aqueous solution. Carbohyd. Polym. 83, 1082 (2011)

    CAS  Google Scholar 

  19. A. Ghosh, M.A. Ali, Studies on physicochemical characteristics of chitosan derivatives with dicarboxylic acids. J. Mater. Sci. 47, 1196 (2012)

    CAS  Google Scholar 

  20. X. Guo, F. Chen, Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ. Sci. Technol. 39, 6808 (2005)

    CAS  PubMed  Google Scholar 

  21. M. Habuda-Stanić, M. Nujić, Arsenic removal by nanoparticles: a review. Environ. Sci. Pollut. Res. 22, 8094 (2015)

    Google Scholar 

  22. Y.-S. Han, J.-H. Park, Y. Min, D.-H. Lim, Competitive adsorption between phosphate and arsenic in soil containing iron sulfide: xas experiment and dft calculation approaches. Chem. Eng. J. 397, 125426 (2020)

    CAS  Google Scholar 

  23. A. Hassan, A. Abdel-Mohsen, H. Elhadidy, Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. Int. J. Biol. Macromol. 68, 125 (2014)

    CAS  PubMed  Google Scholar 

  24. C. Hu, H. Liu, G. Chen, J. Qu, Effect of aluminum speciation on arsenic removal during coagulation process. Sep. Purif. Technol. 86, 35 (2012)

    CAS  Google Scholar 

  25. M.M. Islam, M.N. Khan, S. Biswas, T.R. Choudhury, P. Haque, T.U. Rashid, M.M. Rahman, Preparation and characterization of bijoypur clay-crystalline cellulose composite for application as an adsorbent. Adv. Mater. Sci. (2017). https://doi.org/10.15761/AMS.1000126

    Article  Google Scholar 

  26. E.-K. Jeon, S. Ryu, S.-W. Park, L. Wang, D.C. Tsang, K. Baek, Enhanced adsorption of arsenic onto alum sludge modified by calcination. J. Clean. Prod. 176, 54 (2018)

    CAS  Google Scholar 

  27. X. Jiang, H.-Y. Chen, L.-L. Liu, L.-G. Qiu, X. Jiang, Fe3O4 embedded zif-8 nanocrystals with ultra-high adsorption capacity towards hydroquinone. J. Alloy. Compd. 646, 1075 (2015)

    CAS  Google Scholar 

  28. C. Lasko, K. Adams, E. DeBenedet, P. West, A simple sulfuric acid pretreatment method to improve the adsorption of cr (vi) by chitosan. J. Appl. Polym. Sci. 93, 2808 (2004)

    CAS  Google Scholar 

  29. L. Li, L. Fan, M. Sun, H. Qiu, X. Li, H. Duan, C. Luo, Adsorbent for hydroquinone removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan. Int. J. Biol. Macromol. 58, 169 (2013)

    CAS  PubMed  Google Scholar 

  30. W.-Y. Li, J. Liu, H. Chen, Y. Deng, B. Zhang, Z. Wang, X. Zhang, S. Hong, Application of oxalic acid cross-linking activated alumina/chitosan biocomposites in defluoridation from aqueous solution. Investigation of adsorption mechanism. Chem. Eng. J. 225, 865 (2013)

    CAS  Google Scholar 

  31. H. Lun, J. Ouyang, H. Yang, Enhancing dispersion of halloysite nanotubes via chemical modification. Phys. Chem. Miner. 41, 281 (2014)

    CAS  Google Scholar 

  32. W. Luo, Z. Bai, Y. Zhu, Fast removal of co (ii) from aqueous solution using porous carboxymethyl chitosan beads and its adsorption mechanism. RSC Adv. 8, 13370 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Y. Mamindy-Pajany, C. Hurel, N. Marmier, M. Roméo, Arsenic (v) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of ph, concentration and reversibility. Desalination 281, 93 (2011)

    CAS  Google Scholar 

  34. T. Mishra, D.K. Mahato, A comparative study on enhanced arsenic (v) and arsenic (iii) removal by iron oxide and manganese oxide pillared clays from ground water. J. Environ. Chem. Eng. 4, 1224 (2016)

    CAS  Google Scholar 

  35. E. Nematollahi, M. Pourmadadi, F. Yazdian, H. Fatoorehchi, H. Rashedi, M.N. Nigjeh, Synthesis and characterization of chitosan/polyvinylpyrrolidone coated nanoporous γ-alumina as a ph-sensitive carrier for controlled release of quercetin. Int. J. Biol. Macromol. 183, 600 (2021)

    CAS  PubMed  Google Scholar 

  36. N.R. Nicomel, K. Leus, K. Folens, P. Van Der Voort, G. Du Laing, Technologies for arsenic removal from water: current status and future perspectives. Int. J. Environ. Res. Public Health 13, 62 (2016)

    Google Scholar 

  37. D.Q. Oliveira, M. Gonçalves, L.C. Oliveira, L.R. Guilherme, Removal of as (v) and cr (vi) from aqueous solutions using solid waste from leather industry. J. Hazard. Mater. 151, 280 (2008)

    CAS  PubMed  Google Scholar 

  38. B.S. Rathi, P.S. Kumar, A review on sources, identification and treatment strategies for the removal of toxic arsenic from water system. J. Hazard. Mater. 418, 126299 (2021)

    CAS  PubMed  Google Scholar 

  39. F. Sadegh-Zadeh, B.J. Seh-Bardan, Adsorption of as (iii) and as (v) by fe coated biochars and biochars produced from empty fruit bunch and rice husk. J. Environ. Chem. Eng. 1, 981 (2013)

    Google Scholar 

  40. N. Salahudeen, A.S. Ahmed, H. Ala’a, M. Dauda, S.M. Waziri, B.Y. Jibril, Synthesis of gamma alumina from kankara kaolin using a novel technique. Appl. Clay Sci. 105, 170 (2015)

    Google Scholar 

  41. S. Shengli, L. Jun**, L. Qi, N. Fangru, F. Jia, X. Shulian, Optimized preparation of phragmites australis activated carbon using the box-behnken method and desirability function to remove hydroquinone. Ecotoxicol. Environ. Saf. 165, 411 (2018)

    PubMed  Google Scholar 

  42. F. Silerio-Vázquez, J.B. Proal Nájera, J. Bundschuh, M.T. Alarcon-Herrera, Photocatalysis for arsenic removal from water: considerations for solar photocatalytic reactors. Environ. Sci. Pollut. Res. 29, 61594 (2022)

    Google Scholar 

  43. A.L. Srivastav, T.D. Pham, S.C. Izah, N. Singh, P.K. Singh, Biochar adsorbents for arsenic removal from water environment: a review. Bull. Environ. Contam. Toxicol. 108, 616 (2021)

    PubMed  Google Scholar 

  44. S. Suresh, V. Chandra Srivastava, I. Mani Mishra, Adsorption of hydroquinone in aqueous solution by granulated activated carbon. J. Environ. Eng. 137, 1145 (2011)

    CAS  Google Scholar 

  45. A. Tarlani, M. Isari, A. Khazraei, M. Eslami Moghadam, New sol–gel derived aluminum oxide-ibuprofen nanocomposite as a controlled releasing medication. Nanomed. Res. J. 2, 28 (2017)

    CAS  Google Scholar 

  46. B.R. Vieira, A.M. Pintor, R.A. Boaventura, C.M. Botelho, S.C. Santos, Arsenic removal from water using iron-coated seaweeds. J. Environ. Manag. 192, 224 (2017)

    CAS  Google Scholar 

  47. H. Wang, X. Liang, Y. Liu, T. Li, K.-Y.A. Lin, Recycling spent iron-based disposable-chemical-warmer as adsorbent for As (v) removal from aqueous solution. Resour. Conserv. Recycl. 168, 105284 (2021)

    CAS  Google Scholar 

  48. H. Wang, W. Sun, X. Liang, H. Zou, X. Jiao, K.A. Lin, T. Li, Two-dimensional Fe2o3 nanosheets as adsorbent for the removal of Pb (ii) from aqueous solution. J. Mol. Liq. 335, 116197 (2021)

    CAS  Google Scholar 

  49. Y. Wang, Z. Liu, W. Huang, J. Lu, S. Luo, B. Czech, T. Li, H. Wang, Capture-reduction mechanism for promoting Cr (vi) removal by sulfidated microscale zerovalent iron/sulfur-doped graphene-like biochar composite. Carbon Res 2, 11 (2023)

    Google Scholar 

  50. Z. Wen, J. Lu, Y. Zhang, G. Cheng, S. Huang, J. Chen, R. Xu, Y.-A. Ming, Y. Wang, R. Chen, Facile inverse micelle fabrication of magnetic ordered mesoporous iron cerium bimetal oxides with excellent performance for arsenic removal from water. J. Hazard. Mater. 383, 121172 (2020)

    CAS  PubMed  Google Scholar 

  51. C. Wu, L. Huang, S.-G. Xue, Y.-Y. Huang, W. Hartley, M.-Q. Cui, M.-H. Wong, Arsenic sorption by red mud-modified biochar produced from rice straw. Environ. Sci. Pollut. Res. 24, 18168 (2017)

    CAS  Google Scholar 

  52. X. **e, C. Lu, R. Xu, X. Yang, L. Yan, C. Su, Arsenic removal by manganese-doped mesoporous iron oxides from groundwater: performance and mechanism. Sci. Total. Environ. 806, 150615 (2022)

    CAS  PubMed  Google Scholar 

  53. N. Yıldız, R. Gönülşen, H. Koyuncu, A. Çalımlı, Adsorption of benzoic acid and hydroquinone by organically modified bentonites. Colloids Surf. A 260, 87 (2005)

    Google Scholar 

  54. M. Zaw, M.T. Emett, Arsenic removal from water using advanced oxidation processes. Toxicol. Lett. 133, 113 (2002)

    CAS  PubMed  Google Scholar 

  55. K. Zhou, J. Zhang, Y. **ao, Z. Zhao, M. Zhang, L. Wang, X. Zhang, C. Zhou, High-efficiency adsorption of and competition between phenol and hydroquinone in aqueous solution on highly cationic amino-poly (vinylamine)-functionalized go-(o-mwcnts) magnetic nanohybrids. Chem. Eng. J. 389, 124223 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are greatly acknowledging the assistance of environmental engineering research center, Sahand University of Technology, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zabihi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 672 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noormohammadi, M., Zabihi, M. & Faghihi, M. Design, Characterization and Performance of the Modified Chitosan–Alumina Nanocomposites for the Adsorption of Hydroquinone and Arsenic (V) Ions. Korean J. Chem. Eng. 41, 1535–1550 (2024). https://doi.org/10.1007/s11814-024-00078-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00078-5

Keywords

Navigation