Log in

Modeling of reverse osmosis flux of aqueous solution containing glucose

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The aim of the paper is to model the permeate flux during reverse osmosis (RO) of a highly concentrated glucose solution using the osmotic pressure model. Such a model accounts for the effect of the concentration polarization phenomenon on the permeate flux. To apply this model the viscosity, the osmotic pressure of solution and the diffusion coefficient of glucose were estimated. Using mathematical simulation software, the values of mass transfer coefficient for different concentrations of glucose (5, 10, 15 and 20 wt%) and at different feed flow rate were determined. The experimental permeate flux values conducted on flat RO membranes (Type HR-99) agreed well with the values calculated by the osmotic pressure model, as shown by statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Alvarez, S. Alvarez, F. A. Riera and R. Alvarez, J. Membr. Sci., 127, 25 (1997).

    Article  CAS  Google Scholar 

  2. H. Nabetani, M. Nakajima and A. Watanabe, J. Chem. Eng. Jpn., 25, 575 (1992).

    Article  CAS  Google Scholar 

  3. G. Srinivasan, S. Sundaramoorthy and D. V. R. Murthy, Desalination, 281, 199 (2011).

    Article  CAS  Google Scholar 

  4. S. Sundaramoorthy, G. Srinivasan and D. V. R. Murthy, Desalination, 277, 257 (2011).

    Article  CAS  Google Scholar 

  5. M. Kostoglou and A. J. Karabelas, Desalination, 316, 91 (2013).

    Article  CAS  Google Scholar 

  6. L.-Y. Hung, S. J. Lue and J.-H. You, Desalination, 265, 67 (2011).

    Article  CAS  Google Scholar 

  7. G. H. Lopes, B. Bernales Chavez, N. Ibaseta, P. Guichardon and P. Haldenwang, Procedia Eng., 44, 1934 (2012).

    Article  Google Scholar 

  8. A. A. Merdw, A. O. Sharif and G. A. W. Derwish, Chem. Eng. J., 168, 215 (2011).

    Article  Google Scholar 

  9. W. F. Blatt, A. Dravid, A. S. Michaels and L. Nelson, Membrane Science and Technology, J. E. Flinn, (Eds.), Plenum, New York, 47 (1970).

  10. S. Nakao, T. Nomura and S. Kimura, AIChE J., 25, 615 (1979).

    Article  CAS  Google Scholar 

  11. S. Kimura and S. Sourirajan, AIChE J., 13, 497 (1967).

    Article  CAS  Google Scholar 

  12. M. Mulder, Basic Priciples of Membrane Technology, 2nd Ed., Kluwer Academic publishers, Netherlands, 421 (1996).

    Book  Google Scholar 

  13. H. Nabetani, M. Nakajima, A. Watanabe, S. Ikeda, S. Nakao and S. Kimura, J. Chem. Eng. Jpn., 25, 269 (1992).

    Article  CAS  Google Scholar 

  14. J. K. Gladden and M. Dole, J. Am. Chem. Soc., 75, 3900 (1953).

    Article  CAS  Google Scholar 

  15. D. T. Constela, J. E. Lozano and G. H. Crapiste, J. Food Sci., 54, 663 (1989).

    Article  Google Scholar 

  16. P. N. Henrion, Trans. Faraday Soc., 60, 493 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amor Hafiane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaghbani, N., Nakajima, M., Nabetani, H. et al. Modeling of reverse osmosis flux of aqueous solution containing glucose. Korean J. Chem. Eng. 34, 407–412 (2017). https://doi.org/10.1007/s11814-016-0298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0298-9

Keywords

Navigation