Log in

Preparation of activated carbon from fly ash and its application for CO2 capture

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Power and desalination plants are one of the main anthropogenic sources for CO2 generation, which is one of the key elements to cause greenhouse gas effect and thus contribute to the global warming. Fly ash (FA) generated in desalination and power plants was converted into activated carbon (AC) treated with KOH at higher temperature and tested for CO2 capturing efficiency. Morphological characteristics of FA such as BET specific surface area (SSA), pore volume, pore diameter, and pore size distribution (PSD) were performed using N2 adsorption isotherm. CO2 adsorption capacity and adsorption isotherms of CO2 over AC were measured by performing thermogravimetric analysis at different temperatures. BET SSA of 161 m2g−1 and adsorption capacity of 26mg CO2/g AC can be obtained by activation at KOH/FA ratio of 5 at 700 °C and activation time of 2 h. Therefore, great potential exists for producing AC from FA, which will have the positive effect of reducing the landfill problem and global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. M. Valer, C. Song and Y. Soong, Environmental challenges and greenhouse gas Control for fossil fuel utilization in the 21 st Century, Springer (2003).

    Google Scholar 

  2. C. L. Quere, Earth Syst. Sci. Data, 6, 689 (2013).

    Article  Google Scholar 

  3. M. Daous, The 20 th International conference on solid waste technology and management, Philadelphia, USA (2005).

    Google Scholar 

  4. M.M. Rahman, A.G. Dalvi, K.A. Rabbani, S. Al-Sulami, F. Mandili, H. M. Khaledi and B. Al-Jowdi, Evaluation of fuel chemical additives to reduce corrosion and stack emission in SWCC power plants, 4 th SWCC Acquired Experience Symposium, Jeddah, Saudi Arabia (2005).

    Google Scholar 

  5. S. Wang and H. Wu, J. Hazard. Mater. B, 136, 482 (2006).

    Article  CAS  Google Scholar 

  6. D. C. Adriano, A. L. Page, A. A. Elseewi, A. C. Chang and I. Straughan, J. Environ. Qual., 9, 333 (1980).

    Article  CAS  Google Scholar 

  7. J. Paya, J. Monzo, M.V. Borrachero, E. Peris and E.G. Lopez, Cem. Concr. Res., 27, 1365 (1997).

    Article  CAS  Google Scholar 

  8. K.D. Weerdt, M. B. Haha, G. L. Saout, K.O. Kjellsen, H. Justnes and B. Lothenbach. Cem. Concr. Res., 41, 279 (2011).

    Article  Google Scholar 

  9. R. J. Flatt, N. Roussel and C.R. Cheeseman, J. Eurp. Ceram. Soc., 32, 2787 (2012).

    Article  CAS  Google Scholar 

  10. N. Sombatsompop, S. Thongsang, T. Markpin and E. Wimolmala, J. Appl. Polym. Sci., 93, 2119 (2004).

    Article  CAS  Google Scholar 

  11. P. Chindaprasirt, P.D. Silva, K. Sagoe-Crentsil and S. Hanjitsuwan, J. Mater. Sci., 47, 4876 (2012).

    Article  CAS  Google Scholar 

  12. D.P. Vargas, L. Giraldo and J. C. M. Piraján, Int. J. Mol. Sci., 13, 8388 (2012).

    Article  CAS  Google Scholar 

  13. D.M. D. Alessandro, B. Smit and J.R. Long, Angew. Chem. Int. Ed., 49, 6058 (2010).

    Article  Google Scholar 

  14. C. H. Yu, C. H. Huang and C. S. Tan, Aerosol Air Qual. Res., 12, 745 (2012).

    CAS  Google Scholar 

  15. R. C. Bansal, J.B. Donnet, F. Stoeckli and M. Deckker, J. Dispersion Sci. Technol., 11, 323 (1990).

    Article  Google Scholar 

  16. M. Valix, W. H. Cheung and G. McKay, Chemosphere, 56, 493 (2004).

    Article  CAS  Google Scholar 

  17. T. H. Usmani, M. Tahir, I. Siddiqui and F. A. Parveen, J. Chem. Soc. Pak., 25, 183 (2003).

    CAS  Google Scholar 

  18. F. Caturla, M. M. Sabio and F.R. Reinoso, Carbon, 29, 999 (1991).

    Article  CAS  Google Scholar 

  19. A. A. Pour and D.D. Do, Carbon, 34, 471 (1996).

    Article  Google Scholar 

  20. K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul and P. Chindaprasirt, Fuel, 90, 2118 (2011).

    Article  CAS  Google Scholar 

  21. F. C. Wu, P.H. Wu, R. L. Tseng and R. S. Juang, J. Environ. Manage., 91, 1097 (2010).

    Article  CAS  Google Scholar 

  22. R.L. Tseng, S. K. Tseng, F. C. Wu, C. C. Hu and C.C. Wang, J. Chin. Inst. Chem. Eng., 39, 37 (2008).

    Article  Google Scholar 

  23. M. A. L. Rodenas, J. J. Juan, D. C. Amoros and A. L. Solano, Carbon, 42, 1371 (2004).

    Article  Google Scholar 

  24. M. A. L. Rodenas, D. C. Amoros and A. L. Solano, Carbon, 41, 267 (2003).

    Article  Google Scholar 

  25. G. G. Stavropoulos, Fuel Process. Technol., 86, 1165 (2005).

    Article  CAS  Google Scholar 

  26. L. Chunlan, X. Shao**, G. Yixiong, L. Shuqin and L. Changhou, Carbon, 43, 2295 (2005).

    Article  Google Scholar 

  27. S. Lowell, J. E. Shields, M. A. Thomas and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, Netherland (2004).

    Book  Google Scholar 

  28. T. Yang and A. C. Lua, J. Colloid Interface Sci., 267, 408 (2003).

    Article  CAS  Google Scholar 

  29. M. J. I. Gómez, A. G. García, C. S. M. de Lecea and A. L. Solano, Energy Fuels, 10, 1108 (1996).

    Article  Google Scholar 

  30. F. Rouquerol, J. Rouquerol and K. Sing, Adsorption by powders and porous solids: Principles methodology and applications, Academic Press, London (1999).

    Google Scholar 

  31. G. Horvath and K. Kawazoe, J. Chem. Eng. Jpn., 16, 470 (1983).

    Article  CAS  Google Scholar 

  32. J.A.M. Agullo, B.C. Moore, D.C. Amoros and A.L. Solano, Micropor. Mesopor. Mater., 101, 397 (2007).

    Article  Google Scholar 

  33. Allwar,_A.M. Noor and M.A.M. Nawi, J. Phys. Sci., 19(2), 93 (2008).

    Google Scholar 

  34. G. Aranovich and M. Donohue, J. Colloid Interface Sci., 194, 392 (1997).

    Article  CAS  Google Scholar 

  35. S. H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka and I. Mochida, Carbon, 42, 1723 (2004).

    Article  CAS  Google Scholar 

  36. F. Rouquerol, J. Rouquerol and K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, First edition, Academic Press (1998).

    Google Scholar 

  37. R.T. Yang, Gas separation by adsorption process, vol. 1, Imperial College Press, Boston (1997).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yahia Abobakor Alhamed or Sami Ullah Rather.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhamed, Y.A., Rather, S.U., El-Shazly, A.H. et al. Preparation of activated carbon from fly ash and its application for CO2 capture. Korean J. Chem. Eng. 32, 723–730 (2015). https://doi.org/10.1007/s11814-014-0273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0273-2

Keywords

Navigation