Log in

Viscosity of ionic liquids using the concept of mass connectivity and artificial neural networks

  • Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Artificial neural networks (ANN) and the concept of mass connectivity index are used to correlate and predict the viscosity of ionic liquids. Different topologies of a multilayer feed forward artificial neural network were studied and the optimum architecture was determined. Viscosity data at several temperatures taken from the literature for 58 ionic liquids with 327 data points were used for training the network. To discriminate among the different substances, the molecular mass of the anion and of the cation, the mass connectivity index and the density at 298 K were considered as the independent variables. The capabilities of the designed network were tested by predicting viscosities for situations not considered during the training process (31 viscosity data for 26 ionic liquids). The results demonstrate that the chosen network and the variables considered allow estimating the viscosity of ionic liquids with acceptable accuracy for engineering calculations. The program codes and the necessary input files to calculate the viscosity for other ionic liquids are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. N. Marsh, A. Deev, A. C. T. Wu, E. Tran and A. Klamt, Korean J. Chem. Eng., 19(3) 357 (2002).

    Article  CAS  Google Scholar 

  2. P. Wasserscheid and T. Welton, Ionic liquids in synthesis, 2nd Ed., Wiley-VCH Verlag GmbH & Co., Germany (2008).

    Google Scholar 

  3. M. Koel, Ionic liquids in chemical analysis, CRC Press Boca Raton, Florida, USA (2009).

    Google Scholar 

  4. R. L. Gardas and J. A. P. Coutinho, Fluid Phase Equil., 266,1–2 195 (2008).

    Article  CAS  Google Scholar 

  5. D. Zhao, Z. Fei, R. Scopelliti and P. Dyson, Inorg. Chem., 43, 2197 (2004).

    Article  CAS  Google Scholar 

  6. A. Ouadi, B. Gadenne, P. Hesemann, J. J. E. Moreau, I. Billard, C. Gaillard, S. Mekki and G. Moutiers, Chem. Eur. J., 12, 3074 (2006).

    Article  CAS  Google Scholar 

  7. R. C. Reid, J. M. Prausnitz and B. E. Poling, The properties of gases and liquids, McGraw Hill, New York (1987).

    Google Scholar 

  8. NIST, IUPAC Ionic Liquids Database-(ILThermo), NIST Standard Reference Database #147, http://ilthermo.boulder.nist.gov/ILThermo/mainmenu.uix, access January (2009).

  9. S. Zhang, X. Lu, Q. Zhou, X. Li, X. Zhang and S. Li, Ionic liquids, physicochemical properties, 1st Ed., 478 pages, Elsevier, Amsterdam, The Netherlands (2009).

    Google Scholar 

  10. N. K. Bose and P. Liang, Neural networks fundamentals with graphs, algorithms, and applications, in electrical and computer engineering, McGraw-Hill Series, McGraw-Hill Companies, Inc., USA (1996).

    Google Scholar 

  11. D.M. Himmelblau, Korean J. Chem. Eng., 17(4), 373 (2000).

    Article  CAS  Google Scholar 

  12. J. Taskinen and J. Yliruusi, Adv. Drug Delivery Rev., 55, 1163 (2003).

    Article  CAS  Google Scholar 

  13. T. Suzuki, R. U. Ebert and G. Schüürmann, J. Chem. Inf. Comput. Sci., 41(3), 776 (2001).

    CAS  Google Scholar 

  14. K. Konno, D. Kamei, T. Yokosuka, S. Takami, M. Kubo and A. Miyamoto, Tribology International, 36(4–6) 455 (2003).

    Article  CAS  Google Scholar 

  15. A. Murata, K. Tochigi and H. Yamamoto, Mol. Simulation, 30(7), 451 (2004).

    Article  CAS  Google Scholar 

  16. G. Padmavathi, M. G. Mandan, S. P. Mitra and K. K. Chaudhuri, Comput. Chem. Eng., 29, 1677 (2005).

    Article  CAS  Google Scholar 

  17. G. Carrera and J. Aires-de-Sousa, Green. Chem., 7, 20 (2005).

    Article  CAS  Google Scholar 

  18. J. O. Valderrama and P. A. Robles, Ind. Eng. Chem. Res., 46, 1338 (2007).

    Article  CAS  Google Scholar 

  19. J. O. Valderrama and R. E Rojas, Ind. Eng. Chem. Res., 48, 6890 (2009).

    Article  CAS  Google Scholar 

  20. S. Bretsznajder, Prediction of Transport and other Physical Properties of Fluids, 1st English Edition, Pergamon Press, Oxford, UK (1971).

    Google Scholar 

  21. J. O. Valderrama and R. E. Rojas, Fluid Phase Equil., 297, 107 (2010).

    Article  CAS  Google Scholar 

  22. J.O. Valderrama, A. Reategui and R. E. Rojas, Ind. Eng. Chem. Res., 48, 3254 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Omar Valderrama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valderrama, J.O., Muñoz, J.M. & Rojas, R.E. Viscosity of ionic liquids using the concept of mass connectivity and artificial neural networks. Korean J. Chem. Eng. 28, 1451–1457 (2011). https://doi.org/10.1007/s11814-010-0512-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0512-0

Key words

Navigation