Log in

Application of near infrared diffuse reflectance spectroscopy for on-line measurement of coal properties

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The applicability of the Multi-wavelength Near-infrared sensor to analyze coal properties such as proximate analysis (moisture, ash, volatile matter, fixed carbon), ultimate analysis (carbon, hydrogen, nitrogen, oxygen, sulfur) and heating value is discussed. The most useful wavelengths (1,680, 1,942, 2,100, 2,180, 2,300 nm) for determining coal properties concentration were chosen by analyzing the NIR spectrum according to coal properties. Absorbances at the characteristic wavelength obtained from 128 mixed coal samples, which are using at a conventional thermal power plant, were correlated to the coal properties by using multiple regression analysis. The accuracy of coal analysis was examined by calculating the RMSEC (%), RMSEP (%), comparing the error with ASTM/ISO tolerance and performing paired Student’s T-test. The result of on-line coal analysis for all moisture, volatile matter, fixed carbon, carbon, hydrogen and heating value is not different from that of ASTM/ISO traditional methods at 90% confidence level. The technology appears suitable for the determination of several coal prorperties. If calibrated periodically, this on-line analysis of coal properties is helpful to efficiently operate a coal fired power plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Fuller and P. R. Griffiths, Anal. Chem., 50(13), 1906 (1978).

    Article  CAS  Google Scholar 

  2. M. P. Fuller, I. M. Hamadeh, P. R. Griffiths and D. E. Lowenhaupt, Fuel, 61(6), 529 (1982).

    Article  CAS  Google Scholar 

  3. P.M. Fredericks, R. Kobayashi and P.R. Osborn, Fuel, 66(11), 1603 (1987).

    Article  CAS  Google Scholar 

  4. S. V. Pisupati and A. W. Scaroni, Fuel, 72(3), 531 (1993).

    Article  CAS  Google Scholar 

  5. A. Koch, A. Krzton, G. Finqueneisel, O. Heintz, J.V. Weber and T. Zimmy, Fuel, 77(6), 563 (1998).

    Article  CAS  Google Scholar 

  6. H. Machnikowska, A. Krzton and J. Machnikowski, Fuel, 81(2), 245 (2002).

    Article  CAS  Google Scholar 

  7. M. Kaihara, T. Takahashi, T. Akazawa, T. Sato and S. Takahashi, Spectrosc. Lett., 35(3), 369 (2002).

    Article  CAS  Google Scholar 

  8. J. M. Andres and M. T. Bona, Anal. Chim. Acta, 535(1), 123 (2005).

    Article  CAS  Google Scholar 

  9. J. M. Andres and M. T. Bona, Talanta, 70(4), 711 (2006).

    Article  CAS  Google Scholar 

  10. D.W. Kim, J. M. Lee, J. S. Kim and H. J. Kim, Korean Chem. Eng. Res., 45(6), 596 (2007).

    Article  CAS  Google Scholar 

  11. H. I. Jung and H. J. Kim, Analytical Science & Technology, 13(1), 1 (2000).

    Google Scholar 

  12. K. R. Beebe, R. J. Pell and M. B. Seasholtz, Chemometrics: A practical guide, John Wiley & Sons, Inc., 255–256 (1998).

  13. D. C. Harris, Quantitative chemical analysis, Freeman, Inc., 62–63 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Min Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D.W., Lee, J.M. & Kim, J.S. Application of near infrared diffuse reflectance spectroscopy for on-line measurement of coal properties. Korean J. Chem. Eng. 26, 489–495 (2009). https://doi.org/10.1007/s11814-009-0083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0083-0

Key words

Navigation