Log in

Zirconium mesostructures immobilized in calcium alginate for phosphate removal

  • Energy and Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Eutrophication caused by the excessive supply of phosphate to water bodies has been considered as one of the most important environmental problems. In this study, the powder of zirconium mesostructure (ZM), which was prepared with the template of surfactant, was immobilized in calcium alginate for practical application and the resulting material was tested to evaluate the phosphate removal efficiency. Sorption isotherms and kinetic parameters were obtained by using the entrapped ZM beads with 30 to 60% of ZM. The maximum sorption capacity increased with the higher ZM content. Q max in Langmuir isotherm was 51.74 mg/g for 60% of ZM with 7 mm of size. The smaller the particle size of the ZM beads, the faster the rate of phosphate removal, because the phosphate ions had less distance to reach the internal pores of the immobilized ZM beads. Chemical and electrochemical regeneration techniques were compared. Phosphates adsorbed on the ZM beads were effectively desorbed with NaCl, NaOH, and Na2SO4 solutions. An electrochemical regeneration system consisting of an anion exchange membrane between two platinum-coated titanium electrodes was successfully used to desorb and regenerate the phosphate-saturated ZM beads. Complete regeneration was reached under optimal experimental conditions. Chemical and electrochemical regeneration proved the reusability of the bead form of the entrapped ZM, and will enhance the economical performance of the phosphate treatment process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Aguilar, J. Saez, M. Llorens, A. Soler and J. F. Ortuno, Water Res., 36, 2910 (2002).

    Article  CAS  Google Scholar 

  2. D. Brdjanovic, A. Slamet, M. C. M. van Loosdrecht, C. M. Hooijmans, G. J. Alaerts and J. J. Heijnen, Water Res., 32, 200 (1998).

    Article  CAS  Google Scholar 

  3. J. M. Ebeling, P. L. Sibrell, S. R. Ogden and S. T. Summerfelt, Aquacult Eng., 29, 23 (2003).

    Article  Google Scholar 

  4. Y. Jaffer, T. A. Clark, P. Pearce and S. A. Parsons, Water Res., 36, 1834 (2002).

    Article  CAS  Google Scholar 

  5. X. P. Zhu and A. Jyo, Water Res., 39, 2301 (2005).

    Article  CAS  Google Scholar 

  6. M. T. L. Meganck and G. M. Faup, Eds., Enhanced biological phosphorus removal from watewaters, CRC Press, Roca Raton, FL (1988).

    Google Scholar 

  7. K. Urano and H. Tachikawa, Ind. Eng. Chem. Res., 30, 1893 (1991).

    Article  CAS  Google Scholar 

  8. T. Hano, H. Takanashi, M. Hirata, K. Urano and S. Eto, Water Sci. Technol., 35, 39 (1997).

    Article  CAS  Google Scholar 

  9. L. Zeng, X. M. Li and J. D. Liu, Water Res., 38, 1318 (2004).

    Article  CAS  Google Scholar 

  10. O. Bastin, F. Janssens, J. Dufey and A. Peeters, Ecol. Eng., 12, 339 (1999).

    Article  Google Scholar 

  11. R. A. Berner, Earth. Planet. Sc. Lett., 18, 77 (1973).

    Article  CAS  Google Scholar 

  12. E. Kobayashi, K. Uematsu, Y. Nagawa and M. Sugai, Nippon Kagaku Kaishi, 1412 (1982).

  13. M. J. Haron, S. A. Wasay and S. Tokunaga, Water Environ. Res., 69, 1047 (1997).

    Article  CAS  Google Scholar 

  14. D. Y. Zhao and A. K. Sengupta, Water Sci. Technol., 33, 139 (1996).

    Article  CAS  Google Scholar 

  15. H. Takada, Y. Watanabe and M. Iwamoto, Chem. Lett., 33, 62 (2004).

    Article  CAS  Google Scholar 

  16. M. Iwamoto, H. Kitagawa and Y. Watanabe, Chem. Lett., 814 (2002).

  17. S. H. Lee, B. C. Lee, K. W. Lee, Y. S. Choi, K. Y. Park and M. Iwamoto, in Wastewater reclamation & reuse for sustainability, IWA specialty conference, Jeju, South Korea (2005).

    Google Scholar 

  18. P. Wu and M. Iwamoto, Chem. Lett., 1213 (1998).

  19. P. McMorn and G. J. Hutchings, Chem. Soc. Rev., 33, 108 (2004).

    Article  CAS  Google Scholar 

  20. U. Ciesla, S. Schacht, G. D. Stucky, K. K. Unger and F. Schuth, Angew. Chem. Int. Edit., 35, 541 (1996).

    Article  CAS  Google Scholar 

  21. J. S. Reddy and A. Sayari, Catal. Lett., 38, 219 (1996).

    Article  CAS  Google Scholar 

  22. H. Ertesvag and S. Valla, Polym. Degrad. Stabil., 59, 85 (1998).

    Article  CAS  Google Scholar 

  23. Y. S. Ho and G. McKay, Water Res., 34, 735 (2000).

    Article  CAS  Google Scholar 

  24. M. Mulder, Basic principles of membrane technology, Kluwer Academic Publishers, Netherlands (1996).

    Google Scholar 

  25. W. S. Winston Ho and K. K. Sirkar, in Membrane handbook, V. Goel, M. A. Accomazzo, A. J. DiLeo, P. Meier, A. Pitt, M. Pluskal and R. Kaiser Eds., Van Nostrand Reinhold, New York (1992).

    Google Scholar 

  26. K. Kuzawa, Y. J. Jung, Y. Kiso, T. Yamada, M. Nagai and T. G. Lee, Chemosphere, 62, 45 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hyup Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeon, KH., Park, H., Lee, SH. et al. Zirconium mesostructures immobilized in calcium alginate for phosphate removal. Korean J. Chem. Eng. 25, 1040–1046 (2008). https://doi.org/10.1007/s11814-008-0170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0170-7

Key words

Navigation