Log in

Mineralization-related geochemical anomalies derived from stream sediment geochemical data using multifractal analysis in Pangxidong area of Qinzhou-Hangzhou tectonic joint belt, Guangdong Province, China

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies into their component patterns were described. A set of stream sediment geochemical data was obtained for 1 880 km2 of the Pangxidong area, which is in the southern part of the recently recognized Qinzhou-Hangzhou joint tectonic belt. This belt crosses southern China and tends to the northwest (NE) direction. The total number of collected samples was 7 236, and the concentrations of Ag, Au, Cu, As, Pb and Zn were measured for each sample. The spatial combination distribution law of geochemical elements and principal component analysis (PCA) were used to construct combination models for the identification of combinations of geochemical anomalies. Spectrum-area (S-A) fractal modeling was used to strengthen weak anomalies and separate them from the background. Composite anomaly modeling was combined with fractal filtering techniques to process and analyze the geochemical data. The raster maps of Au, Ag, Cu, As, Pb and Zn were obtained by the multifractal inverse distance weighted (MIDW) method. PCA was used to combine the Au, Ag, Cu, As, Pb, and Zn concentration values. The S-A fractal method was used to decompose the first component pattern achieved by the PCA. The results show that combination anomalies from a combination of variables coincide with the known mineralization of the study area. Although the combination anomalies cannot reflect local anomalies closely enough, high-anomaly areas indicate good sites for further exploration for unknown deposits. On this basis, anomaly and background separation from combination anomalies using fractal filtering techniques can provide guidance for later work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIMA A, DE VIVO B, CICCHELLA D, CORTINI M, ALBANESE S. Multifractal IDW interpolation and fractal filtering method in environmental studies: An application on regional stream sediments of Campania Region (Italy) [J]. Applied Geochemistry, 2003, 18(12): 1853–1865.

    Article  Google Scholar 

  2. GALUSZKA A. A review of geochemical background concepts and an example using data from Poland [J]. Environmental Geology, 2007, 52(5): 861–870.

    Article  Google Scholar 

  3. GRUNSKY E C, DREW L J, SUTPHIN D M. Process recognition in multi-element soil and stream-sediment geochemical data [J]. Applied Geochemistry, 2009, 24(8): 1602–1616.

    Article  Google Scholar 

  4. XIE X J, REN T X, XI X H, ZHANG L S. The implementation of the regional geochemistry-national reconnaissance program (RGNR) in China in the past thirty years [J]. Acta Geoscientica Sinica, 2009, 30(6): 700–716. (in Chinese)

    Google Scholar 

  5. MA S M, ZHU L X, LIU H L, WANG H Q, XU M Z. A study of geochemical anomaly structure of the Huitongshan Copper Deposit in Beishan Area, Gansu Province. Acta Geoscientica Sinica, 2011, 32(4): 405–412. (in Chinese)

    Google Scholar 

  6. ZHOU Y Z, CHOWN E H, TU G C, GUHA J, LU H Z. Geochemical migration and resultant distribution patterns of impurity trace elements in source rocks [J]. Mathematical Geology, 1994, 4, 419–435.

    Article  Google Scholar 

  7. DOU L, ZHOU Y Z, MA J. Using multivariate statistical and geostatistical methods to identify spatial variability of trace elements in agricultural soils in Dongguan City, Guangdong, China [J]. Journal of China University of Geosciences: English Version, 2008, 19(4): 343–353.

    Google Scholar 

  8. CARRANZA E J M. Analysis and map** of geochemical anomalies using logratio-transformed stream sediment data with censored values [J]. Journal of Geochemical Exploration, 2011, 110(2): 167–185.

    Article  Google Scholar 

  9. ZHOU Z M, ZHANG G H, WANG J Z, YAN M J. Spatial variability of soil salinity, total dissolved solid and groundwater depth based on Cokriging in the low plain around the Bohai Sea [J]. Acta Geoscientica Sinica, 2011, 32(4): 493–499. (in Chinese)

    Google Scholar 

  10. XIE S Y. Identification of geochemical anomaly by multifractal analysis [J]. Journal of China University of Geosciences, 2008, 19(4): 334–342.

    Article  Google Scholar 

  11. CHENG Q M, AGTERBERG F P. Singularity analysis of ore-mineral and toxic trace elements in stream sediments [J]. Computer & Geosciences, 2009, 35(2): 234–244.

    Article  Google Scholar 

  12. XIE S Y, CHENG Q M, XING X T, BAO Z Y, CHEN Z J. Geochemical multifractal distribution patterns in sediments from ordered streams J]. Geoderma, 2010, 160(1): 36–46.

    Article  Google Scholar 

  13. ZHANG Y, CHENG Q M, ZHOU Y Z, XIE S Y, LIU X L, XU D Y. Assessment of fractal interpolation method in geochemical exploration [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011, 50(1): 133–137. (in Chinese)

    Google Scholar 

  14. ZUO R G, XIA Q L. Application fractal and multifractal methods to map** prospectivity for metamorphosed sedimentary iron deposits using stream sediment geochemical data in eastern Hebei province, China [J]. Geochimica et Cosmochimica Acta, 2009, 73(13): A1540–A1540.

    Google Scholar 

  15. XU Y G, CHENG Q M. A fractal filtering technique for processing regional geochemical maps for mineral exploration [J]. Geochemistry: Exploration, Analysis and Environment, 2001, 1(5): 147–156.

    Article  Google Scholar 

  16. CHENG Q M. Multifractal imaging filtering and decomposition methods in space, fourier frequency, and eigen domains [J]. Nonlinear Processes in Geophysics, 2007, 14(3): 293–303.

    Article  Google Scholar 

  17. CHENG Q M, XU Y G, GRUNSKY E. Integrated spatial and spectrum method for geochemical anomaly separation [J]. Natural Resources Research, 2000, 9, 43–51.

    Article  Google Scholar 

  18. ZHANG Y, ZHOU Y Z, WANG Z H, HUANG R, LV W C, WANG L F, LIANG J, ZENG C Y. The recognition and extraction of geochemical composite anomalies: A case study of Pangxidong area [J]. Acta Geoscientica Sinica, 2011, 32(5): 533–540. (in Chinese)

    Google Scholar 

  19. YANG M G, MEI Y W. Characteristics of geology and metallization in the Qinzhou-Hangzhou paleoplate juncture [J]. Geology and Mineral Resources of South China, 1997, 13(3): 52–59. (in Chinese)

    Google Scholar 

  20. YANG M G, HUANG S B, LOU F S, TANG W X, MAO S B. Lithospheric structure and large-scale metallogenic process in Southeast China continental area [J]. Geology in China, 2009, 36(3): 528–543. (in Chinese)

    Google Scholar 

  21. CHENG Q M. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments [J]. Mathematical Geology, 2008, 40(5), 503–532.

    MATH  Google Scholar 

  22. DENG J, WANG Q F, WAN L, LIU H, YANG LQ, ZHANG J. A multifractal analysis of mineralization characteristics of the Dayingezhuang disseminated-veinlet gold deposit in the Jiaodong gold province of China [J]. Ore Geology Reviews, 2011, 40(1): 54–64.

    Article  Google Scholar 

  23. ZHANG Y, ZHOU Y Z, LI W S. Application of multifractal modeling to stream sediment data for prediction of Pb/Zn in Liujiashan area, north Guangdong, China [J/OL]. IAMG, 2011, doi:10.5242/iamg.2011.0023.

  24. ZUO R G. Exploring the effects of cell size in geochemical map** [J]. Journal of Geochemical Exploration, 2012, 112(1): 357–367.

    Article  Google Scholar 

  25. LIMA A, PLANT J A, DE VIVO B, TARVAINEN T, ALBANESE S, CICCHELLA D. Interpolation methods for geochemical maps: A comparative study using arsenic data from European stream waters [J]. Geochemistry: Exploration, Environment, Analysis, 2008, 8(2): 41–48.

    Article  Google Scholar 

  26. ZUO R G. Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet (China) [J]. Journal of Geochemical Exploration, 2011, 111(1/2): 13–22.

    Article  Google Scholar 

  27. CHENG Q M. Map** singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China [J]. Ore Geology Reviews, 2007, 32(1/2): 314–324.

    Article  Google Scholar 

  28. CARRANZA E J M. Geochemical anomaly and mineral prospectivity map** in GIS [M]// Handbook of Exploration and Environmental Geochemistry, Vol. 11. Amsterdam: Elsevier, 2008.

    Google Scholar 

  29. CHENG Q M, XIA Q L, LI W C, ZHANG S Y, CHEN Z J, ZUO R G, WANG W L. Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China [J]. Biogeosciences, 2010, 7(10): 3019–3025.

    Article  Google Scholar 

  30. ZUO R G. Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China [J]. Applied Geochemistry, 2011, 26(Supplement): S271–S273.

    Article  Google Scholar 

  31. LIMA A. Evaluation of geochemical background at regional and local scales by fractal filtering technique: Case studies in selected Italian areas [J]. Environmental Geochemistry, 2008, 27(6): 135–152.

    Article  MathSciNet  Google Scholar 

  32. TURCOTTE D L. Fractals in Geology and Geophysics [M]. 2nd ed. New York: Cambridge University Press, 1997: 33–50.

    Book  Google Scholar 

  33. LI Q M, CHENG Q M. Fractal singular value (eginvalue) decomposition method for geophysical and geochemical anomaly reconstruction [J]. Earth Science-Journal of China University of Geosciences, 2004, 29(1): 109–118. (in Chinese)

    Google Scholar 

  34. CHENG Q M, BONHAM-CARTER G, WANG W L, ZHANG S Y, LI W C, XIA Q L. A spatially weighted principal component analysis for multi-element geochemical data for map** locations of felsic intrusions in the Gejiu mineral district of Yunnan, China [J]. Computers & Geosciences, 2011, 37(5): 662–669.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang  (张焱).

Additional information

Foundation item: Project(1212010071012) supported by Guangdong Pangxidong Mineral Prospect Investigation, China; Project(41004051) supported by the National Natural Science Foundation of China; Project ([2007]038-01-18) supported by Nationwide Mineral Resource Potential Evaluation Projects of Ministry of Land and Resources, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhou, Yz., Wang, Lf. et al. Mineralization-related geochemical anomalies derived from stream sediment geochemical data using multifractal analysis in Pangxidong area of Qinzhou-Hangzhou tectonic joint belt, Guangdong Province, China. J. Cent. South Univ. 20, 184–192 (2013). https://doi.org/10.1007/s11771-013-1475-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-013-1475-1

Key words

Navigation