Log in

Dyslipidemic Diabetic Serum Increases Lipid Accumulation and Expression of Stearoyl-CoA Desaturase in Human Macrophages

  • Original Article
  • Published:
Lipids

Abstract

Type 2 diabetes and dyslipidemia are risk factors for cardiovascular disease. However, mechanisms by which hypertriglyceridemia influences atherogenesis remain unclear. We examined effects of dyslipidemic diabetic serum on macrophage lipid accumulation as a model of foam cell formation. Normal human macrophages were cultured in media supplemented with 10% serum from non-diabetic normolipidemic or non-diabetic hypercholesterolemic adults versus adults with Type 2 diabetes; diabetes and hypertriglyceridemia; or diabetes and hypercholesterolemia. Exposure to diabetic sera resulted in increased macrophage fatty acids (2–3 fold higher, both saturated and unsaturated). Macrophage expression of CD36, scavenger receptor A (SR-A) and stearoyl-CoA desaturase (SCD) was increased, most prominently in macrophages exposed to hypertriglyceridemic diabetic serum (twofold increase in CD36 and fourfold increase in SCD, p < 0.05). In these conditions, RNA inhibition of CD36 reduced macrophage free cholesterol (163.9 ± 10.5 vs. 221.9 ± 26.2 mmol free cholesterol/g protein, p = 0.04). RNA inhibition of SCD decreased macrophage fatty acid content, increased ABCA1 level and enhanced cholesterol efflux (18.0 ± 3.9 vs. 8.0 ± 0.8% at 48 h, p = 0.03). Diabetic dyslipidemia may contribute to accelerated atherosclerosis via alterations in macrophage lipid metabolism favoring foam cell formation. Increased expression of CD36 and SR-A would facilitate macrophage lipid uptake, while increased expression of SCD could block compensatory upregulation of ABCA1 and cholesterol efflux. Further studies are needed to clarify whether modulation of macrophage lipid metabolism might reduce progression of diabetic atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABCA1:

ATP-binding cassette transporter A1

ABCG1:

ATP-binding cassette transporter G1

CD36:

Cluster of differentiation 36

CE:

Cholesterol ester

CVD:

Cardiovascular disease

FA:

Fatty acid(s)

FC:

Free cholesterol

GC:

Gas chromatography

GC–MS:

Gas chromatography–mass spectrometry

HDL:

High density lipoprotein

hMDM:

Human monocyte-derived macrophage(s)

LDL:

Low density lipoprotein

LXR:

Liver X receptor

PPARγ:

Peroxisome proliferator-activated receptor gamma

RNAi:

RNA inhibition

SCD:

Stearoyl-CoA desaturase

siRNA:

Small interfering RNA

SR-A:

Scavenger receptor A

TG:

Triglyceride

References

  1. Schramm TK, Gislason GH, Kober L, Rasmussen S, Rasmussen JN, Abildstrom SZ, Hansen ML, Folke F, Buch P, Madsen M, Vaag A, Torp-Pedersen C (2008) Diabetes patients requiring glucose-lowering therapy and non-diabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation 117:1945–1954

    Article  PubMed  CAS  Google Scholar 

  2. Mooradian AD (2009) Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 5:150–159

    Article  PubMed  CAS  Google Scholar 

  3. Osterud B, Bjorklid E (2003) Role of monocytes in atherogenesis. Physiol Rev 83:1069–1112

    PubMed  CAS  Google Scholar 

  4. Manning-Tobin JJ, Moore KJ, Seimon TA, Bell SA, Sharuk M, Alvarez-Leite JI, de Winther MP, Tabas I, Freeman MW (2009) Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol 29:19–26

    Article  PubMed  CAS  Google Scholar 

  5. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P (2001) A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7:161–171

    Article  PubMed  CAS  Google Scholar 

  6. Vaughan AM, Oram JF (2006) ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J Lipid Res 47:2433–2443

    Article  PubMed  CAS  Google Scholar 

  7. Jessup W, Gelissen IC, Gaus K, Kritharides L (2006) Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol 17:247–257

    Article  PubMed  CAS  Google Scholar 

  8. Senanayake S, Brownrigg LM, Panicker V, Croft KD, Joyce DA, Steer JH, Puddey IB, Yeap BB (2007) Monocyte-derived macrophages from men and women with Type 2 diabetes mellitus differ in fatty acid composition compared with non-diabetic controls. Diabetes Res Clin Pract 75:292–300

    Article  PubMed  CAS  Google Scholar 

  9. Mauldin JP, Nagelin MH, Wojcik AJ, Srinivasan S, Skaflen MD, Ayers CR, McNamara CA, Hedrick CC (2008) Reduced expression of ATP-binding cassette transporter G1 increases cholesterol accumulation in macrophages of patients with type 2 diabetes mellitus. Circulation 117:2785–2792

    Article  PubMed  CAS  Google Scholar 

  10. Wong BXW, Kyle RA, Croft KD, Quinn CM, Jessup W, Yeap BB (2011) Modulation of macrophage fatty acid content and composition by exposure to dyslipidemic serum in vitro. Lipids 46:371–380

    Article  PubMed  CAS  Google Scholar 

  11. Wang Y, Oram JF (2002) Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of ATP-binding cassette transporter A1. J Biol Chem 277:5692–5697

    Article  PubMed  CAS  Google Scholar 

  12. Wang Y, Kurdi-Haidar B, Oram JF (2004) LXR-mediated activation of macrophage stearoyl-CoA desaturase generates unsaturated fatty acids that destabilize ABCA1. J Lipid Res 45:972–980

    Article  PubMed  CAS  Google Scholar 

  13. MacDonald MLE, van Eck M, Hildebrand RB, Wong BWC, Bissada N, Ruddle P, Kontush A, Hussein H, Pouladi MA, Chapman MJ, Fievet C, van Berkel TJC, Staels B, McManus BM, Hayden MR (2009) Despite antiatherogenic metabolic characteristics, SCD1-deficient mice have increased inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol 29:341–347

    Article  PubMed  CAS  Google Scholar 

  14. Liu X, Miyazaki M, Flowers MT, Sampath H, Zhao M, Chu K, Paton CM, Joo DS, Ntambi JM (2010) Loss of stearoyl-CoA desaturase-1 attenuates adipocyte inflammation: effects of adipocyte-derived oleate. Arterioscler Thromb Vasc Biol 30:31–38

    Article  PubMed  Google Scholar 

  15. Brown JM, Chung S, Sawyer JK, Degirolamo C, Alger HM, Nguyen TM, Zhu X, Duong M-N, Brown AL, Lord C, Shah R, Davis MA, Kelley K, Wilson MD, Madenspacher J, Fessler MB, Parks JS, Rudel LL (2010) Combined therapy of dietary fish oil and stearoyl-CoA desaturase 1 inhibition prevents the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 30:24–30

    Article  PubMed  CAS  Google Scholar 

  16. Rifai N, Warnick GR (2006) Lipids, lipoproteins, apolipoproteins, and other cardiovascular risk factors. In: Burtis CA, Ashwood ER, Bruns DE (eds) Tietz textbook of clinical chemistry and molecular diagnostics, 4th edn edn. Elsevier Saunders, St Louis, pp 903–981

    Google Scholar 

  17. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM (2002) Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 43:1899–1907

    Article  PubMed  CAS  Google Scholar 

  18. Legrand P, Rioux V (2010) The complex and important cellular and metabolic functions of saturated fatty acids. Lipids 45:941–946

    Article  PubMed  CAS  Google Scholar 

  19. Mertens A, Verhamme P, Bielicki JK, Phillips MC, Quarck R, Verreth W, Stengel D, Ninio E, Navab M, Mackness B, Mackness M, Holvoet P (2003) Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis. Circulation 107:1640–1646

    Article  PubMed  CAS  Google Scholar 

  20. Liang CP, Han S, Okamoto H, Carnemolla R, Tabas I, Accili D, Tall AR (2004) Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 113:764–773

    PubMed  CAS  Google Scholar 

  21. Mauldin JP, Srinivasan S, Mulya A, Gebre A, Parks JS, Daugherty A, Hedrick CC (2006) Reduction in ABCG1 in Type 2 diabetic mice increases macrophage foam cell formation. J Biol Chem 281:21216–21224

    Article  PubMed  CAS  Google Scholar 

  22. De Pascale C, Avella M, Perona JS, Ruiz-Gutierrez V, Wheeler-Jones CP, Botham KM (2006) Fatty acid composition of chylomicron remnant-like particles influences their uptake and induction of lipid accumulation in macrophages. FEBS J 273:5632–5640

    Article  PubMed  Google Scholar 

  23. Oram JF, Heinecke JW (2005) ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev 85:1343–1372

    Article  PubMed  CAS  Google Scholar 

  24. Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, Milstone DS, Mortensen RM, Spiegelman BM, Freeman MW (2001) The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med 7:41–47

    Article  PubMed  CAS  Google Scholar 

  25. Larrede A, Quinn CM, Jessup W, Frisdal E, Olivier M, Hsieh V, Kim M-J, Van Eck M, Couvert P, Carrie A, Giral P, Chapman MJ, Guerin M, Le Goff W (2009) Stimulation of cholesterol efflux by LXR agonists in cholesterol-loaded human macrophages is ABCA1-dependent but ABCG1-independent. Arterioscler Thromb Vasc Biol 29:1930–1936

    Article  PubMed  CAS  Google Scholar 

  26. Lagos KG, Filippatos TD, Tsimihodimos V, Gazi IF, Rizos C, Tselepis AD, Mikhailidis DP, Elisaf MS (2009) Alterations in the high density lipoprotein phenotype and HDL-associated enzymes in subjects with metabolic syndrome. Lipids 44:9–16

    Article  PubMed  CAS  Google Scholar 

  27. Cuchel M, Lund-Katz S, de la Llera-Moya M, Millar JS, Chang D, Fuki I, Rothblat GH, Phillips MC, Rader DJ (2010) Pathways by which reconstituted high-density lipoprotein mobilizes free cholesterol from whole body and from macrophages. Arterioscler Thromb Vasc Biol 30:526–532

    Article  PubMed  CAS  Google Scholar 

  28. Rahman SM, Dobrzyn A, Dobrzyn P, Lee SH, Miyazaki M, Ntambi JM (2003) Stearoyl-CoA desaturase 1 deficiency elevates insulin-signaling components and down-regulates protein-tyrosine phosphatase 1B in muscle. Proc Natl Acad Sci USA 100:11110–11115

    Article  PubMed  CAS  Google Scholar 

  29. MacDonald ML, Singaraja RR, Bissada N, Ruddle P, Watts R, Karasinska JM, Gibson WT, Fievet C, Vance JE, Staels B, Hayden MR (2008) Absence of stearoyl-CoA desaturase-1 ameliorates features of the metabolic syndrome in LDLR-deficient mice. J Lipid Res 49:217–229

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank staff from Biochemistry, Specimen Reception and Transfusion Medicine, Fremantle Hospital for their assistance with this project, and the Australian Red Cross Blood Service for providing buffy coats. This work was supported by research Grants from the National Heart Foundation of Australia (G07 P3159), the Raine Medical Foundation of Western Australia, the University of Western Australia and the Fremantle Hospital Medical Research Foundation, Western Australia.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bu B. Yeap.

About this article

Cite this article

Wong, B.X.W., Kyle, R.A., Myhill, P.C. et al. Dyslipidemic Diabetic Serum Increases Lipid Accumulation and Expression of Stearoyl-CoA Desaturase in Human Macrophages. Lipids 46, 931–941 (2011). https://doi.org/10.1007/s11745-011-3578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3578-5

Keywords

Navigation