Log in

Sesamin Increases Alpha-Linolenic Acid Conversion to Docosahexaenoic Acid in Atlantic Salmon (Salmo salar L.) Hepatocytes: Role of Altered Gene Expression

  • Original Article
  • Published:
Lipids

Abstract

In vitro cultivated Atlantic salmon (Salmo salar L.), hepatocytes were incubated without or with a mixture of sesamin and episesamin in order to test for possible effects on lipid metabolism. Sesamin/episesamin exposure (0.05 mM, final concentration) led to increased elongation and desaturation of 14C 18:3n-3 to docosahexaenoic acid (14C 22:6n-3, DHA, P < 0.01) and down regulated gene expression of Δ6 and Δ5 desaturases compared to control treatment. Sesamin/episesamin further increased the hepatocytes capacity for fatty acid β-oxidation of 14C 18:3n-3 (P < 0.01) to the 14C acid soluble products, acetate, malate and oxaloacetate, in agreement with an increased gene expression of carnitine palmitoyltransferase I. Also the gene expression of cluster of differentiation 36 was upregulated and the expression of scavenger receptor type B, peroxisome proliferator-activated receptors α and γ were downregulated. The amount of triacylglycerols secreted by the cells tended to be lower in the sesamin/episesamin incubated hepatocytes than the control cells. This study shows that sesamin has favourable effects on lipid metabolism leading to increased level of DHA, which may be of interest for aquaculture use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACO:

Acyl-CoA oxidase

ASP:

Acid soluble products

BSA:

Bovine serum albumin

cd 36:

Cluster of differentiation 36

CPT1:

Carnitin palmitoyl transferase I

DHA:

Docosahexaenoic acid (22:6n-3)

EDTA:

Ethylenediaminetetraacetic acid

EF1A:

Elongation factor 1α

EPA:

Eicosapentaenoic acid (20:5n-3)

FAD:

Flavin-adenine-dinucleotide

FBS:

Fetal bovine serum

FFA:

Free fatty acids

HEPES:

Phenylethylamine and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

LCPUFA:

Long chain polyunsaturated fatty acids

LDCF 2, 7:

Dichlorofluorescein

MG:

Monoglycerides

MUFA:

Monounsaturated fatty acids

PBS:

Phosphate buffer saline

PCR:

Polymerase chain reaction

PL:

Phospholipids

PPAR:

Peroxisome proliferator-activated receptors

PUFA:

Polyunsaturated fatty acid

RPL2 RNA:

Polymerase II polypeptide

SAFA:

Saturated fatty acids

SRB-I:

Scavenger receptor type B

SREBP-1:

Sterol regulatory element-binding protein-1

TAG:

Triacylglycerols

TLC:

Thin-layer chromatography

VLDL:

Very low-density lipoprotein

Δ5:

Δ5 Desaturase

Δ6:

Δ6 Desaturase

References

  1. Tacon AGJ (2008) State of information on salmon aquaculture feed and the environment. Report prepared for the WWF US Initiated Salmon Aquaculture Dialogue, p 80, http://www.westcoastaquatic.ca/Aquaculture_feed_environment.pdf(accessed March 2008)

  2. FAO (2007) Faostat, http://www.faostat.fao.org/ (accessed November 2007)

  3. Torstensen BE, Bell JG, Rosenlund G, Henderson RJ, Graff IE, Tocher DR, Lie O, Sargent JR (2005) Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend. J Agri Food Chem 53:10166–10178

    Article  CAS  Google Scholar 

  4. Ackman RG (1996) DHA: can it benefit salmon marketing? J Aquatic Food Prod Tech 5:7–26

    Article  CAS  Google Scholar 

  5. Trattner S, Kamal-Eldin A, Brännäs E, Moazzami A, Zlabek V, Larsson P, Ruyter B, Gjøen T, Pickova J (2008) Sesamin supplementation increases white muscle docosahexaenoic acid (DHA) levels in rainbow trout (Oncorhynchus mykiss) fed high alpha-linolenic acid (ALA) containing vegetable oil: metabolic actions. Lipids. doi:10.1007/s11745-008-3228-8

  6. Kiso Y, Tsuruoka N, Kidokoro A, Matsumoto I, Abe K (2005) Sesamin ingestion regulates the transcription levels of hepatic metabolizing enzymes for alcohol and lipids in rats. Alcohol Clin Exp Res 29:116S–120S

    Article  PubMed  CAS  Google Scholar 

  7. Jeng KCG, Hou RCW (2005) Sesamin and sesamolin: nature’s therapeutic lignans. Curr Enzym Inhib 1:11–20

    Article  CAS  Google Scholar 

  8. Ashakumary L, Rouyer I, Takahashi Y, Ide T, Fukuda N, Aoyama T, Hashimoto T, Mizugaki M, Sugano M (1999) Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metabolism 48:1303–1313

    Article  PubMed  CAS  Google Scholar 

  9. Fujiyama-Fujiwara Y, Umeda-Sawada R, Kuzuyama M, Igarashi O (1995) Effects of sesamin on the fatty acid composition of the liver of rats fed n-6 and n-3 fatty acids-rich diet. J Nutr Sci Vitaminol 41:217–225

    PubMed  CAS  Google Scholar 

  10. Kushiro M, Masaoka T, Hageshita S, Takahashi Y, Ide T, Sugano M (2002) Comparative effect of sesamin and episesamin on the activity and gene expression of enzymes in fatty acid oxidation and synthesis in rat liver. J Nutri Biochem 13:289–295

    Article  CAS  Google Scholar 

  11. Kamal-Eldin A, Frank J, Razdan A, Tengblad S, Basu S, Vessby B (2000) Effects of dietary phenolic compounds on tocopherol, cholesterol, and fatty acids in rats. Lipids 35:427–435

    Article  PubMed  CAS  Google Scholar 

  12. Ide T, Hong DD, Ranasinghe P, Takahashi Y, Kushiro M, Sugano M (2004) Interaction of dietary fat types and sesamin on hepatic fatty acid oxidation in rats. Biochim Biophys Acta 1682:80–91

    PubMed  CAS  Google Scholar 

  13. Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83

    Article  PubMed  CAS  Google Scholar 

  14. Dannevig BH, Berge T (1985) Endocytosis of galactose-terminated glycoproteins by isolated liver cells of the rainbow trout (Salmo gairdneri). Comp Biochem Physiol B 82:683–688

    Article  PubMed  CAS  Google Scholar 

  15. Kjaer MA, Vegusdal A, Gjoen T, Rustan AC, Todorcevic M, Ruyter B (2008) Effect of rapeseed oil and dietary n-3 fatty acids on triacylglycerol synthesis and secretion in Atlantic salmon hepatocytes. Biochim Biophys Acta 1781:112–122

    PubMed  CAS  Google Scholar 

  16. Folch J, Lees M, Stanley SG H (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  17. Narce M, Gresti J, Bezard J (1988) Method for evaluating the bioconversion of radioactive polyunsaturated fatty acids by use of reversed-phase liquid chromatography. J Chromatogr A 448:249–264

    Article  CAS  Google Scholar 

  18. Hara A, Radin NS (1978) Lipid extraction of tissue with low toxicity solvent. Anal Biochem 90:420–426

    Article  PubMed  CAS  Google Scholar 

  19. Appelqvist L (1968) Rapid methods of lipid extractions and fatty acid methyl ester preparation for seed and leaf tissue with special remarks on preventing the accumulation of lipids contaminants. R Swedish Acad of Sci 28:551–570

    CAS  Google Scholar 

  20. Fredriksson S, Elwinger K, Pickova J (2006) Fatty acid and carotenoid composition of egg yolk as an effect of microalgae addition to feed formula for laying hens. Food Chem 99:530–537

    Article  CAS  Google Scholar 

  21. Christiansen R, Borrebaek B, Bremer J (1976) The effect of (-)carnitine on the metabolism of palmitate in liver cells isolated from fasted and refed rats. FEBS Lett 62:313–317

    Article  PubMed  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  23. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  24. Small GM, Burdett K, Connock MJ (1985) A sensitive spectrophotometric assay for peroxisomal acyl-CoA oxidase. Biochem J 227:205–210

    PubMed  CAS  Google Scholar 

  25. Leighton F, Bergseth S, Rortveit T, Christiansen EN, Bremerll J (1989) Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation. J Biol Chem 264:10347–10350

    PubMed  CAS  Google Scholar 

  26. Voss A, Reinhart M, Sankarappa S, Sprecher H (1991) The metabolism of 7, 10, 13, 16, 19-docosapentaenoic acid to 4, 7, 10, 13, 16, 19-docosahexaenoic acid in rat-liver is independent of a Δ4-Desaturase. J Biol Chem 266:19995–20000

    PubMed  CAS  Google Scholar 

  27. Kiessling KH, Kiessling A (1993) Selective utilization of fatty-acids in rainbow-trout (Oncorhynchus-Mykiss Walbaum) red muscle mitochondria. Can J Zool 71:248–251

    Article  CAS  Google Scholar 

  28. Umeda-Sawada R, Ogawa M, Igarashi O (1998) The metabolism and n-6/n-3 ratio of essential fatty acids in rats: effect of dietary arachidonic acid and mixture of sesame lignans (sesamin and episesamin). Lipids 33:567–572

    Article  PubMed  CAS  Google Scholar 

  29. Vegusdal A, Ostbye TK, Tran TN, Gjoen T, Ruyter B (2004) Beta-oxidation, esterification, and secretion of radiolabeled fatty acids in cultivated Atlantic salmon skeletal muscle cells. Lipids 39:649–658

    Article  PubMed  CAS  Google Scholar 

  30. Ferre P (2004) The biology of peroxisome proliferator—activated receptors—relationship with lipid metabolism and insulin sensitivity. Diabetes 53:S43–S50

    Article  PubMed  CAS  Google Scholar 

  31. Ruyter B, Andersen O, Dehli A, Farrants AKO, Gjoen T, Thomassen MS (1997) Peroxisome proliferator activated receptors in Atlantic salmon (Salmo salar): effects on PPAR transcription and acyl-CoA oxidase activity in hepatocytes by peroxisome proliferators and fatty acids. Biochim Biophys Acta 1348:331–338

    PubMed  CAS  Google Scholar 

  32. Andersen Ø, Eijsink VGH, Thomassen M (2000) Multiple variants of the peroxisome proliferator-activated receptor (PPAR) [gamma] are expressed in the liver of Atlantic salmon (Salmo salar). Gene 255:411–418

    Article  PubMed  CAS  Google Scholar 

  33. Todorčević M, Vegusdal A, Gjøen T, Sundvold H, Torstensen EB, Kjær AM, Ruyter B (2008) Changes in fatty acids metabolism during differentiation of Atlantic salmon preadipocytes; Effects of n-3 and n-9 fatty acids. Biochim Biophys Acta 1781:326–335

    PubMed  Google Scholar 

  34. Lee CH, Olson P, Evans RM (2003) Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144:2201–2207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by the Swedish research councils, Vetenskapsrådet and FORMAS, and the European Union Structural Funding for Fisheries. The authors like to thank Inger Ø Kristiansen at A.S. Nofima for valuable and skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Trattner.

About this article

Cite this article

Trattner, S., Ruyter, B., Østbye, T.K. et al. Sesamin Increases Alpha-Linolenic Acid Conversion to Docosahexaenoic Acid in Atlantic Salmon (Salmo salar L.) Hepatocytes: Role of Altered Gene Expression. Lipids 43, 999–1008 (2008). https://doi.org/10.1007/s11745-008-3229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3229-7

Keywords

Navigation