Log in

Comparison of Surface-Active Properties of (Alkyloxycarbonylmethyl)trimethylammonium Chlorides and Alkyltrimethylammonium Chlorides

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Surface-active properties of cleavable surfactants with a betaine ester group—(n-alkyloxycarbonylmethyl)trimethylammonium chlorides, used as separation reagents—were investigated. Critical micelle concentrations, dispersing powers, and foaming powers were comparable to those of alkyltrimethylammonium chlorides with the same total number of carbon atoms. On the other hand, the solubilities of the four hydrophobic dyes N,N-dimethyl-3-nitroaniline, naphthalene, pyrene, and oil orange SS in the former surfactant solutions were equal to or slightly smaller than those in the solutions of the latter surfactants with the same alkyl chain length. The alkali hydrolysis yields of the formers approached 100% in aqueous buffer solution at pH 10 and 25 °C within 10 min, and the yield at pH 9 was dependent on the alkyl chain length. This type of surfactant was also found to be as an efficient separation reagent which disperses carbon black and solubilizes the above dyes into aqueous neutral solution and then separates them instantaneously and almost perfectly as precipitates when a small excess of NaOH is added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2a–b
Fig. 3a–e
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CMC:

Critical micelle concentration

C n B:

(n-Alkyloxycarbonylmethyl)trimethylammonium chloride

C n TAC:

n-Alkyltrimethylammonium chlorides

DMNA:

N,N-Dimethyl-3-nitroaniline

PyCHO:

1-Pyrenecarboxyaldehyde

[dye]s (M):

concentration of dye solubilized in surfactant solution at a given surfactant concentration

[dye]CMC (M):

concentration of dye solubilized in surfactant solution at CMC

ε :

dielectric constant

λ max (nm):

fluorescence maximum wavelength

n :

number of carbon atoms of a sequential alkyl chain

S :

solubilizing power

[surfactant]t (M):

total surfactant concentration

References

  1. Jaeger DA (1995) Cleavable surfactants. Supramol Chem 5:27–30. doi:10.1080/10610279508029884

    Article  CAS  Google Scholar 

  2. Stjerndahl M, Lundberg D, Holmberg K (2003) Cleavable surfactants. In: Holmberg K (ed) Novel surfactants: preparation, applications, and biodegradability (Surfactant Science Series 114). CRC, London, pp 317–345

  3. Mohlin K, Karlsson P, Holmberg K (2006) Use of cleavable surfactants for alkyl ketene dimer (AKD) dispersions. Colloids Surf A Physicochem Eng Asp 274:200–210. doi:10.1016/j.colsurfa.2005.07.038

    Article  CAS  Google Scholar 

  4. Iyer M, Hayes DG, Harris JM (2001) Synthesis of pH-degradable nonionic surfactants and their applications in microemulsions. Langmuir 17:6816–6821. doi:10.1021/la010494tS0743-7463(01)00494-2

    Article  CAS  Google Scholar 

  5. Rairkar ME, Hayes DG, Harris JM (2007) Solubilization of enzymes in water-in-oil microemulsions and their rapid and efficient release through use of a pH-degradable surfactant. Biotechnol Lett 29:767–771. doi:10.1007/s10529-006-9292-3

    Article  CAS  Google Scholar 

  6. Guo X, MacKay JA, Szoka FC Jr (2003) Mechanism of pH-triggered collapse of phosphatidylethanolamine liposomes stabilized by an ortho ester polyethyleneglycol lipid. Biophys J 84:1784–1795

    Article  CAS  Google Scholar 

  7. Zhu J, Munn RJ, Nantz MH (2000) Self-cleaving ortho ester lipids: a new class of pH-vulnerable amphiphiles. J Am Chem Soc 122:2645–2646. doi:10.1021/ja994149q

    Article  CAS  Google Scholar 

  8. By K, Nantz MH (2004) Dioxazocinium ortho esters: a class of highly pH-vulnerable amphiphiles. Angew Chem Int Ed Engl 116:1137–1140. doi:10.1002/ange.200352589

    Article  Google Scholar 

  9. Itoh Y, Takahashi K, Uemura Y (2008) Solvent extraction of DNA with a hydrolysable double-chain surfactant. Sep Sci Tech (in press)

  10. Itoh Y, Akasaka R, Takahashi K (2008) Preparation of emulsifier-free polystyrene by conventional emulsion polymerization with a hydrolysable emulsifier. J Appl Polym Sci 108:358–361. doi:10.1002/app.27654

    Article  CAS  Google Scholar 

  11. Itoh Y, Akasaka R, Sahara F (2008) Facile polymer coating of papers with polymer latices containing a hydrolysable emulsifier. J Appl Polym Sci (in press)

  12. Lindstedt M, Allenmark S, Thompson RA, Edebo L (1990) Antimicrobial activity of betaine esters, quaternary ammonium amphiphiles which spontaneously hydrolyze into nontoxic components. Antimicrob Agents Chemother 34:1949–1954

    CAS  Google Scholar 

  13. Thompson RA, Allenmark S (1992) Factors influencing the micellar catalyzed hydrolysis of long-chain alkyl betainates. J Colloid Interface Sci 148:241–246. doi:10.1016/0021-9797(92)90132-6

    Google Scholar 

  14. Lundberg D, Holmberg K (2004) Nuclear magnetic resonance studies on hydrolysis kinetics and micellar growth in solutions of surface-active betaine esters. J Surfactants Deterg 7:239–246. doi:10.1007/s11743-004-0307-9

    Article  CAS  Google Scholar 

  15. Menger FM, Galloway AL (2004) Contiguous versus segmented hydrophobicity in micellar systems. J Am Chem Soc 126:15883–15889. doi:10.1021/ja040105s

    Article  CAS  Google Scholar 

  16. Itoh Y, Horiuchi J, Takahashi K (2007) Alkylaldehyde-bisulfite adducts as cleavable surfactants. Colloids Surf A Physicochem Eng Asp 308:118–122. doi:10.1016/j.colsurfa.2007.05.037

    Article  CAS  Google Scholar 

  17. Kalyanasundaram K, Thomas JK (1977) Solvent-dependent fluorescence of pyrene-3-carboxyaldehyde and its applications in the estimation of polarity at micelle–water interfaces. J Phys Chem 81:2176–2180. doi:10.1021/j100538a008

    Article  CAS  Google Scholar 

  18. Rozycka-Roszak B, Przestalski S, Witek S (1988) Calorimetric studies of the micellization of some amphiphilic betaine ester derivatives. J Colloid Interface Sci 125:80–85. doi:10.1016/0021-9797(88)90056-2

    Article  CAS  Google Scholar 

  19. Mukerjee P, Mysels KJ (1971) Critical micelle concentrations of aqueous surfactant systems (National Standards Reference Data Series, vol 36). National Bureau of Standards, Washington, DC

  20. Ridaoui H, Jada A, Vidal L, Donnet J-B (2006) Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size. Colloids Surf A Physicochem Eng Asp 278:149–159. doi:10.1016/j.colsurfa.2005.12.013

    Article  CAS  Google Scholar 

  21. Parida SK, Dash S, Patel S, Mishra BK (2006) Adsorption of organic molecules on silica surface. Adv Colloid Interface Sci 121:77–110. doi:10.1016/j.cis.2006.05.028

    Article  CAS  Google Scholar 

  22. Namba Y, Hayashi S, Fuchizawa T (1955) Studies on the factors affecting detergency. I. About sodium soaps of saturated fatty acids. Yukagaku 4:238–244

    CAS  Google Scholar 

  23. Hayashi S, Yamamoto T, Fuchizawa T, Namba Y (1957) Studies on the factors affecting detergency. III. About sodium salts of saturated fatty alcohol sulfates. Yukagaku 6:213–217

    CAS  Google Scholar 

  24. Takada M, Kurihara M, Shibuya S, Kitamura K, Matsumoto A, Moriya M, Hidaka H (1996) Fundamental properties of amphoteric surfactant 3-(N′-acyl)-aminopropyl-N,N-dimethyl-N-carboxymethyl betaine. J Jpn Oil Chem Soc 45:1239–1246

    Google Scholar 

  25. Porter MR (1994) Chapter 4. In: Handbook of surfactants, 2nd edn. Blackie, Glasgow

  26. Edwards DA, Luthy RG, Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol 25:127–133. doi:10.1021/es00013a014

    Article  CAS  Google Scholar 

  27. Sangster Research Laboratories (2008) LOGKOW—a databank of evaluated octanol–water partition coefficients (log P). http://logkow.cisti.nrc.ca/logkow/, accessed on August 2008

  28. Virtual Computational Chemistry Laboratory (2008) ALOGPS 2.1. http://www.vcclab.org/lab/alogps/, accessed on August 2008

  29. Abe A, Imae T, Ikeda S (1987) Solubilization properties of aqueous solutions of alkyltrimethylammonium halides toward a water-insoluble dye. Colloid Polym Sci 265:637–645. doi:10.1007/BF01412780

    Article  CAS  Google Scholar 

  30. Christian SD, Scamehorn JF (1995) Solubilization in surfactant aggregates (Surfactant Science Series 55). CRC, London

  31. Turro NJ, Okubo T (1982) Polarity at the micelle–water interface under high pressure as estimated by a pyrene-3-carboxyaldehyde fluorescence probe. J Phys Chem 86:159–161. doi:10.1021/j100391a003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (No. 20550168) and a Grant-in-Aid for Global COE program from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Itoh.

About this article

Cite this article

Itoh, Y., Akasaka, R. Comparison of Surface-Active Properties of (Alkyloxycarbonylmethyl)trimethylammonium Chlorides and Alkyltrimethylammonium Chlorides. J Surfact Deterg 12, 101–107 (2009). https://doi.org/10.1007/s11743-008-1097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-008-1097-z

Keywords

Navigation