Log in

Identification and validation of drought-responsive microRNAs from Hevea brasiliensis

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Drought, in combination with high temperature and low humidity affects the productivity of Hevea brasiliensis, the natural rubber tree and its expansion to non-traditional regions. The genotypes of H. brasiliensis that perform well in traditional regions often failed in non-traditional regions thus necessitating breeding for stress-tolerant genotypes. This can be accomplished by adopting molecular-assisted selection method. Recent developments in identification of drought-responsive transcripts from H. brasiliensis and the findings on role of small RNAs indicate the possibility of employing them as markers for identification of suitable genotypes. In this study, we attempted to identify drought-responsive miRNAs from H. brasiliensis through next-generation sequencing (Illumina HiSeq) method. The results revealed the expression of 33 conserved and 32 novel drought-responsive miRNAs. Further, validation of differentially expressed miRNAs by quantitative expression analysis indicated the association of two novel miRNAs, viz., HbmiRn_63 and HbmiRn_42 and two conserved miRNAs, viz., miR168 and miR160 miRNAs with drought tolerance. These miRNAs can be employed as markers for drought tolerance after validation in a larger set of genotypes. This study opens up the possibility of employing miRNAs as markers for drought tolerance in Hevea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARF:

Auxin response factors

HMGR:

HMG-CoA reductase

MFE:

Minimal folding free energy

miRNA:

MicroRNA

qPCR:

Quantitative PCR

RRII:

Rubber Research Institute of India

References

  • Antolín-Llovera M, Leivar P, Arró M, Ferrer A, Boronat A, Campos N (2011) Modulation of plant HMG-CoA reductase by protein phosphatase 2A. Plant Signal Behav 6(8):1127–1131

    PubMed  PubMed Central  Google Scholar 

  • Barozai MY, Baloch IA, Din M (2012) Identification of MicroRNAs and their targets in Helianthus. Mol Biol Rep 39:2523–2532

    CAS  PubMed  Google Scholar 

  • Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu J-K, Liu R (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127. https://doi.org/10.1186/1471-2229-11-127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet E, He Y, Billiau K, Peer YV (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26(12):1566–1568

    CAS  PubMed  Google Scholar 

  • Chandrashekar TR, Vijayakumar KR, George MJ, Sethuraj MR (1994) Response of few Hevea clones to partial irrigation during immature phase in a dry sub humid climatic region. Indian J Nat Rubber Res 7:114–119

    Google Scholar 

  • Chinnusamy V, Zhu J, Zhou T, Zhu JK (2007) Small RNAs: big role in abiotic stress tolerance of plants. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, New York, pp 223–260

    Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(suppl_2):W155–W159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

    CAS  PubMed  Google Scholar 

  • Devakumar AS, Sathik MB, Jacob J, Annamalainathan K, Gawaiprakash P, Vijayakumar KR (1998) Effects of atmospheric and soil drought on growth and development of Hevea brasiliensis. J Rubber Res 1(3):190–198

    CAS  Google Scholar 

  • Din M, Barozai MY, Baloch IA (2014) Identification and functional analysis of new conserved microRNAs and their targets in potato (Solanum tuberosum L.). Turk J Bot 38:1199–1213

    CAS  Google Scholar 

  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64(11):3077–3086. https://doi.org/10.1093/jxb/ert164

    Article  CAS  PubMed  Google Scholar 

  • Eldem V, Akçay UC, Ozhuner E, Bakır Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One 7(12):e50298. https://doi.org/10.1371/journal.pone.0050298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdous J, Hussain SS, Shi B-J (2015) Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13:293–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdous J, Whitford R, Nguyen M, Brien C, Langridge P, Tricker PJ (2016) Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Funct Integr Genom 17(2–3):279–292

    Google Scholar 

  • Frazier TP, Sun G, Burklew CE, Zhang B (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49(2):159–165

    CAS  PubMed  Google Scholar 

  • Fu D, Ma B, Mason AS, ** technique in Brassica species. Plant Breed 132(4):375–381

    CAS  Google Scholar 

  • Gebelin V, Argout X, Engchuan W, Pitollat B, Duan C, Montoro P, Leclercq J (2012) Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. BMC Plant Biol 12:18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gebelin V, Leclercq J, Argout X, Chaidamsari T, Hu S, Tang C, Sarah G, Yang M, Montoro P (2013a) The small RNA profile in latex from Hevea brasiliensis trees is affected by tap** panel dryness. Tree Physiol 31:1084–1098

    Google Scholar 

  • Gebelin V, Leclercq J, Chaorong T, Songnian H, Tang C, Montoro P (2013b) Regulation of MIR genes in response to abiotic stress in Hevea brasiliensis. Int. J Mol Sci 14:19587–19604

    CAS  Google Scholar 

  • Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    CAS  PubMed  Google Scholar 

  • Guan X, Pang M, Nah G, Shi X, Ye W, Stelly DM, Chen ZJ (2014) miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat Commun 5:3050

    PubMed  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460. https://doi.org/10.1016/j.pbi.2007.08.014

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Koonin EV, Aravind L (2004) Novel predicted peptidases with a potential role in the ubiquitin signaling pathway. Cell Cycle 3:1440–1450

    CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genom 10:493–507

    CAS  Google Scholar 

  • Kantar M, Lucas S, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484

    CAS  PubMed  Google Scholar 

  • Krishan B (2017) Assessment of drought tolerance in few clones of natural rubber (Hevea brasiliensis) under dry hot climate of Odisha, India. J Exp Biol Agric Sci. https://doi.org/10.18006/2017.5(1).106.110

    Article  Google Scholar 

  • Kuruvilla L, Sathik MBM, Thomas M, Luke LP, Sumesh KV, Annamalainathan K (2016) Expression of miRNAs of Hevea brasiliensis under drought stress is altered in genotypes with varying levels of drought tolerance. Indian J Biotechnol 15:153–160

    CAS  Google Scholar 

  • Kuruvilla L, Sathik MBM, Thomas M, Luke LP, Sumesh KV (2017)) Identification and validation of cold responsive microRNAs of Hevea brasiliensis using high throughput sequencing. J Crop Sci Biotechnol 20(5):369–377

    Google Scholar 

  • Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108

    CAS  PubMed  Google Scholar 

  • Leclercq J, Martin F, Sanier C, Clement-Vidal A, Fabre D, Oliver G, Lardet L, Ayar A, Peyramard M, Montoro P (2012) Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit. Plant Mol Biol 80:255e272

    Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    CAS  PubMed  Google Scholar 

  • Lertpanyasampatha M, Gao L, Kongsawadworakul P, Viboonjum U, Chrestin H, Liu R, Chen X, Narangaajavana J (2012) Genome-wide analysis of microRNAs in rubber tree (Hevea brasiliensis L.) using high-throughput sequencing. Planta 236(2):437–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, ** H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post transcriptionally to promote drought resistance. Plant Cell 20:2238–2251. https://doi.org/10.1105/tpc.108.059444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Yin W, **a X (2009) Identification of microRNAs and their targets from Populus euphratica. Biochem Biophys Res Commun 388:272–277

    CAS  PubMed  Google Scholar 

  • Li W, Wang T, Zhang Y, Li Y (2015) Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot. https://doi.org/10.1093/jxb/erv450

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Wang T, Zhang Y, Li Y (2016) Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot 67:175–194. https://doi.org/10.1093/jxb/erv450

    Article  CAS  PubMed  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Yu W, Hou L, Wang X, Zheng F, Wang W, Liang D, Yang H, ** Y (2014) Analysis of miRNAs and their targets during adventitious shoot organogenesis of Acacia crassicarpa. PLoS One 9(4):e93438. https://doi.org/10.1371/journal.pone.0093438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B (2017) Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genom. https://doi.org/10.1186/s12864-017-3869-1

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Luke LP, Sathik MBM, Thomas M, Kuruvilla L, Sumesh KV, Annamalainathan K (2015) Quantitative expression analysis of drought responsive genes in genotypes of Hevea with varying levels of drought tolerance. Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-015-0288-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohanakrishna T, Bhasker CVS, Rao SP, Chandrashaker TR, Sethuraj MR, Vijayakumar KR (1991) Effect of irrigation on physiological performance of immature plants of Hevea brasiliensis in North Konkan. Indian J Nat Rubber Res 4:36–45

    Google Scholar 

  • Mudgil Y, Shiu S-H, Stone SL, Salt JN, Goring DR (2004) A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-Box E3 ubiquitin ligase family. Plant Physiol 134(1):59–66. https://doi.org/10.1104/pp.103.029553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129. https://doi.org/10.1007/s11103-013-0040-5

    Article  CAS  PubMed  Google Scholar 

  • Noman A, Aqeel M (2017) miRNA-based heavy metal homeostasis and plant growth. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-8593-5

    Article  Google Scholar 

  • Noman A, Fahad S, Aqeel M, Ali U, Amanullah, Anwar S, Baloch SK, Zainab M (2017) miRNAs: major modulators for crop growth and development under abiotic stresses. Biotechnol Lett 39(5):685–700. https://doi.org/10.1007/s10529-017-2302-9

    Article  CAS  PubMed  Google Scholar 

  • Razna K, Hlavackova L, Bezo M, Ziarovska J, Haban M, Slukova Z, Pernisova M (2015) Application of the RAPD and miRNA markers in the genoty** of Silybum marianum (L.) Gaertn. Acta phytotechnica et zootechnica 18(4):83–89. https://doi.org/10.15414/afz.2015.18.04.83-89

    Article  Google Scholar 

  • Sathik MBM, Luke LP, Kuruvilla L, Thomas M (2018) De novo transcriptome analysis of abiotic stress responsive genes of Hevea brasiliensis. Mol Breed. https://doi.org/10.1007/s11032-018-0782-5

    Article  Google Scholar 

  • Sethuraj MR, Rao CG, Raghavendra AS (1984) The pattern of latex flow from rubber tree (Hevea brasiliensis) in relation to water stress. J Cell Biochem Suppl 8B:236

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417

    CAS  PubMed  Google Scholar 

  • Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817. https://doi.org/10.3389/fpls.2016.00817

    Article  PubMed  PubMed Central  Google Scholar 

  • Shuai P, Liang D, Zhang Z, Yin W, **a X (2013) Identification of drought-responsive and novel Populus trichocarpa microRNAs by high throughput sequencing and their targets using degradome analysis. BMC Genom 14:233. https://doi.org/10.1186/1471-2164-14-233

    Article  CAS  Google Scholar 

  • Solofoharivelo MC, Walt AP, Stephan D, Burger JT, Murray SL (2014) MicroRNAs in fruit trees: discovery, diversity and future research directions. Plant Biol 16:856–865

    CAS  PubMed  Google Scholar 

  • Song JB, Gao S, Wang Y, Li BW, Zhang YL, Yang ZM (2016) miR394 and its target gene LCR are involved in cold stress response in Arabidopsis. Plant Gene 5:56–64. https://doi.org/10.1016/j.plgene.2015.12.001

    Article  CAS  Google Scholar 

  • Sreelatha S, Simon SP, Kurup GM, Vijayakumar KR (2007) Biochemical mechanisms associated with low yield during stress in Hevea genotype RRII 105. J Rubber Res 10:107–150

    CAS  Google Scholar 

  • Sreelatha S, Mydin KK, Simon SP, Krishnakumar R, Jacob J, Annamalainathan K (2011) Seasonal variations in yield and associated biochemical changes in RRII 400 series genotypes of Hevea brasiliensis. Nat Rubber Res 24:117–123

    CAS  Google Scholar 

  • Sumesh KV, Satheesh PR, Annamalainathan K, Krishnakumar R, Thomas M, Jacob J (2011) Physiological evaluation of a few modern Hevea clones for intrinsic drought tolerance. Nat Rubber Res 24(1):61–67

    CAS  Google Scholar 

  • Sunkar R, Li Y, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Cell 17:196–203

    CAS  Google Scholar 

  • Tang S, Wang Y, Li Z, Gui Y, ** responsive small RNAs in tobacco (Nicotiana tabacum). BMC Plant Biol 12:28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas M, Sathik MBM, Luke LP et al (2012a) Stress responsive transcripts and their association with drought tolerance in Hevea brasiliensis. J Plant Crops 40(3):180–187

    Google Scholar 

  • Thomas M, Sathik MBM, Luke LP, Sumesh KV, Satheesh PR, Annamalainathan K, Jacob J (2012b) Screening of Drought Responsive transcripts of Hevea brasiliensis and Identification of Candidate Genes for Drought Tolerance. J Plant Biol 38 & 39:111–118

    Google Scholar 

  • Thomas M, Sumesh KV, Sreelatha S et al (2014) Biochemical evaluation of RRII 400 series clones of Hevea brasiliensis for drought tolerance. Indian J Agric Biochem 27(1):35–39

    CAS  Google Scholar 

  • Thomas M, Xavier SM, Sumesh KV, Annamalainathan K, Nair DB, Mercy MA (2015) Identification of potential drought tolerant Hevea germplasm accessions using physiological and biochemical parameters. Rubber Sci 28(1):62–69

    Google Scholar 

  • Vaucheret H (2008) Plant argonautes. Trends Plant Sci 13(7):350–358

    CAS  PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis and activity of plant microRNAs. Cell 136:669–687

    CAS  PubMed  Google Scholar 

  • Wang X, Gui S, Pan L, Hu J, Ding Y (2016) Development and characterization of polymorphic microRNA-based microsatellite markers in Nelumbo nucifera(Nelumbonaceae). Appl Plant Sci 4(1). https://doi.org/10.3732/apps.1500091

  • **a R, Zhu H, An Y-q, Beers EP, Liu Z (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13(6):R47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav CB, Muthamilarasan M, Pandey G, Khan Y (2014) Development of novel microRNA-based genetic markers in foxtail millet for genoty** applications in related grass species. Mol Breed 34(4):2219–2224

    CAS  Google Scholar 

  • Zhang B (2015) MicroRNAs: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66(7):1749–1761. https://doi.org/10.1093/jxb/erv013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230:1–15. https://doi.org/10.1002/jcp.24685

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61(15):4157–4168. https://doi.org/10.1093/jxb/erq237

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q-W, Luo Y-P (2013) Identification of miRNAs and their targets in tea (Camellia sinensis). J Zhejiang Univ Sci B 14(10):916–923

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. K. Annamalainathan (Joint Director, RRII), Dr. Kavitha K. Mydin (Joint Director, RRII) and Dr. James Jacob (Director of Research, RRII) for their constant support and encouragement throughout the course of the work. Authors also wish to thank Dr. Shammi Raj (Principal Scientist, meteorology) and Dr. K.V Sumesh (Scientist, Plant Physiology) for their help in data analysis and Ms. Smitha M Xavier (Research Scholar) for providing germplasm materials. The authors also thank Dr. Deepthy Antony (Senior Scientist, Plant Breeding) for critical reading and correcting the manuscript. Ms. Linu Kuruvilla is grateful to Council of Scientific and Industrial Research, New Delhi for the Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Sathik.

Additional information

Communicated by P. Wojtaszek.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 99 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuruvilla, L., Sathik, M., Luke, L.P. et al. Identification and validation of drought-responsive microRNAs from Hevea brasiliensis. Acta Physiol Plant 41, 14 (2019). https://doi.org/10.1007/s11738-018-2803-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2803-8

Keywords

Navigation