Log in

Comparison of ultrastructural and physiological changes of potato (Solanum tuberosum L.) plantlets subjected to salt and modeling drought stresses

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Salinity and drought are two severe abiotic stresses that affect plant growth and decrease food production worldwide. Compared to the field plants, test-tube plantlets could be more direct and fast to investigate the mechanism of stress adaptation. In the present study, the ultrastructural and physiological differences of potato (Solanum tuberosum L. c.v. “Longshu No. 3”) plantlets in response to the gradient saline (0, 25, 50, 100, and 200 mM NaCl) and the modeling drought stresses with polyethylene glycol (PEG) at the concentrations of 0, 2, 4, 6, and 8 % were analyzed. The results show that the severe salt (200 mM NaCl) and the modeling drought stresses (8 % PEG) inhibited the plantlet growth. There are considerable differences in their ultrastructural alteration under salt and modeling drought adaptation: PEG caused the increase in the number of stacked chloroplast, plastoglobuli, and starch; NaCl induced the decrease in the number of chloroplast and plastoglobuli. Moreover, plantlet has higher free proline content, less malondialdehyde (MDA) content, and higher activities of catalase (CAT) and superoxide dismutase (SOD) under the gradient NaCl treatments than the gradient PEG treatments. The results of this study will provide theoretical and practical insights into characterizing the ultrastructural and physiological differences of plants adapting to various stressful environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Ghamdi AA (2009) Evaluation of oxidative stress tolerance in two wheat (Triticum aestivum) cultivars in response to drought. Int J Agric Biol 11:1560–8530

    Google Scholar 

  • Barbasz A, Kreczmer B, Oćwieja M (2016) Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO3). Acta Physiol Plant 38:76. doi:10.1007/s11738-016-2092-z

    Article  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384. doi:10.1093/jxb/erh269

    Article  CAS  PubMed  Google Scholar 

  • Csiszar J, Galle A, Horvath E, Dancso P, Gombos M, Vary Z, Erdei L, Gyorgyey J, Tari I (2012) Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress. Plant Physiol Bioch 52:119–129. doi:10.1016/j.plaphy.2011.12.006

    Article  CAS  Google Scholar 

  • Daneshmand F, Arvin M, Kalantari K (2010) Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant 32:91–101. doi:10.1007/s11738-009-0384-2

    Article  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379. doi:10.1016/j.tplants.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filek M, Walas S, Mrowiec H, Rudolphy-Skórska E, Sieprawska A, Biesaga-Kościelniak J (2012) Membrane permeability and micro- and macro-element accumulation in spring wheat cultivars during the short-term effect of salinity- and PEG-induced water stress. Acta Physiol Plant 34:985–995. doi:10.1007/s11738-011-0895-5

    Article  CAS  Google Scholar 

  • Gao HJ, Yang HY, Bai JP, Liang XY, Lou Y, Zhang JL, Wang D, Zhang JL, Niu SQ, Chen Y (2015) Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. Front. Plant Sci 5:787. doi:10.3389/fpls.2014.00787

    Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314. doi:10.1104/pp.59.2.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzesiak M, Filek M, Barbasz A, Kreczmer B, Hartikainen H (2013) Relationships between polyamines, ethylene, osmoprotectants and antioxidant enzymes activities in wheat seedlings after shortterm PEG-and NaCl-induced stresses. Plant Growth Regul 69(2):177–189. doi:10.1007/s10725-012-9760-9

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596. doi:10.1155/2014/701596

    Article  PubMed  PubMed Central  Google Scholar 

  • Han QQ, Lü XP, Bai JP, Qiao Y, Paré PW, Wang SM, Zhang JL, Wu YN, Pang XP, Xu WB, Wang ZL (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:525. doi:10.3389/fpls.2014.00525

    PubMed  PubMed Central  Google Scholar 

  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611. doi:10.1007/s004250050524

    Article  CAS  Google Scholar 

  • Jesús Sánchez-Blanco M, Ferrández T, Navarro A, Bañon S, José Alarcón J (2004) Effects of irrigation and air humidity preconditioning on water relations, growth and survival of Rosmarinus officinalis plants during and after transplanting. J Plant Physiol 161:1133–1142. doi:10.1016/j.jplph.2004.01.011

    Article  Google Scholar 

  • Kumar V, Shriram V, Nikam TD, Jawali N, Shitole MG (2008) Sodium chloride-induced changes in mineral nutrients and proline accumulation in indica rice cultivars differing in salt tolerance. J Plant Nutr 31(11):1999–2017. doi:10.1080/01904160802403466

    Article  CAS  Google Scholar 

  • Kwak MJ, Lee SH, Woo SY (2011) Growth and anatomical characteristics of different water and light intensities on cork oak (Quercus suber L.) seedlings. Afr J Biotechnol 10:10964–10979. doi:10.5897/AJB11.2846

    Article  CAS  Google Scholar 

  • Li L, Staden J, Jäger AK (1998) Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul 25:81–87. doi:10.1023/A:1005954532397

    Article  CAS  Google Scholar 

  • Li Y, Sun C, Huang Z, Pan J, Wang L, Fan X (2009) Mechanisms of progressive water deficit tolerance and growth recovery of Chinese maize foundation genotypes Huangzao 4 and Chang 7-2, which are proposed on the basis of comparison of physiological and transcriptomic responses. Plant Cell Physiol 50:2092–2111. doi:10.1093/pcp/pcp145

    Article  CAS  PubMed  Google Scholar 

  • Luna C, García Seffino L, Arias C, Taleisnik E (2008) Oxidative stress indicators as selection tools for salt tolerance in Chloris gayana. Plant Breeding 119:341–345. doi:10.1046/j.1439-0523.2000.00504.x

    Article  Google Scholar 

  • Ma Q, Yue LJ, Zhang JL, Wu GQ, Bao AK, Wang SM (2012) Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiol 32:4–13. doi:10.1093/treephys/tpr098

    Article  CAS  PubMed  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4:580–585

    CAS  Google Scholar 

  • Mäkelä P, Kärkkäinen J, Somersalo S (2000) Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biol Plantarum 43:471–475. doi:10.1023/A:1026712426180

    Article  Google Scholar 

  • Miao BH, Han XG, Zhang WH (2010) The ameliorative effects of silicon on soybean seedling grown in potassium-deficient medium. Ann Bot 105:967–973. doi:10.1093/aob/mcq063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuya S, Takeoka Y, Miyake H (2000) Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. J Plant Physiol 157:661–667. doi:10.1016/S0176-1617(00)80009-7

    Article  CAS  Google Scholar 

  • Moussa HR, Abdel-Aziz SM (2008) Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Aust J Crop Sci 1:31–36

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Noodén LD, Guiamét JJ, John I (2004) 15–Whole plant senescence. In: Noodén LD (ed) Plant cell death processes. Academic Press, San Diego, pp 227–244

    Chapter  Google Scholar 

  • Oksanen E, Riikonen J, Kaakinen S, Holopainen T, Vapaavuori E (2005) Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Global Change Biol 11:732–748. doi:10.1111/j.1365-2486.2005.00938.x

    Article  Google Scholar 

  • Olmos E, Sánchez-Blanco MJ, Ferrández T, Alarcón JJ (2007) Subcellular effects of drought stress in Rosmarinus officinalis. Plant Biol 9:77–84. doi:10.1055/s-2006-924488

    Article  CAS  PubMed  Google Scholar 

  • Queiros F, Rodrigues JA, Almeida JM, Almeida DP, Fidalgo F (2011) Differential responses of the antioxidant defence system and ultrastructure in a salt-adapted potato cell line. Plant physiol bioch 49:1410–1419. doi:10.1016/j.plaphy.2011.09.020

    Article  CAS  Google Scholar 

  • Rivero RM, Mestre TC, Mittler RON, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical, and molecular response in tomato plants. Plant Cell Environ 37:1059–1073. doi:10.1111/pce.12199

    Article  CAS  PubMed  Google Scholar 

  • Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58. doi:10.1083/jcb.17.1.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva EN, Ferreira-Silva SL, Fontenele AdV, Ribeiro RV, Viégas RA, Silveira JAG (2010) Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J Plant Physiol 167:1157–1164. doi:10.1016/j.jplph.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43. doi:10.1016/S0022-5320(69)90033-1

    Article  CAS  PubMed  Google Scholar 

  • Stewart RR, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65:245–248. doi:10.1104/pp.65.2.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Chu Y, Li H, Hou Y, Zhang B, Huang Q, Hu Z, Huang R, Tian Y (2011) Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus x euramericana ‘Guariento’). PLoS One 6:e24614. doi:10.1371/journal.pone.0024614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szalai G, Kellős T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80. doi:10.1007/s00344-008-9075-2

    Article  CAS  Google Scholar 

  • Vassileva V, Demirevska K, Simova-Stoilova L, Petrova T, Tsenov N, Feller U (2012) Long-term field drought affects leaf protein pattern and chloroplast ultrastructure of winter wheat in a cultivar-specific manner. J Agron Crop Sci 198:104–117. doi:10.1111/j.1439-037X.2011.00492.x

    Article  Google Scholar 

  • Wang R, Chen S (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28:947–957. doi:10.1093/treephys/28.6.947

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi:10.1007/s00425-003-1105-5

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Yuan YZ, Ou JQ, Lin QH, Zhang CF (2007) Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. J Plant Physiol 164:695–701. doi:10.1016/j.jplph.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124. doi:10.1007/s11033-009-9884-9

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liang D, Li C, Hao Y, Ma F, Shu H (2012) Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiol Bioch 51:81–89. doi:10.1016/j.plaphy.2011.10.014

    Article  CAS  Google Scholar 

  • Xu ZZ, Zhou GS, Shimizu H (2009) Effects of soil drought with nocturnal warming on leaf stomatal traits and mesophyll cell ultrastructure of a perennial grass. Crop Sci 49:1843–1851. doi:10.2135/cropsci2008.12.0725

    Article  Google Scholar 

  • Yamane K, Kawasaki M, Taniguchi M, Miyake H (2003) Differential effect of NaCl and polyethylene glycol on the ultrastructure of chloroplasts in rice seedlings. J Plant Physiol 160:573–575. doi:10.1078/0176-1617-00948

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Suzuki K, Noguchi K, Nakai M, Terashima I (2006) Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Environ 29:1659–1670. doi:10.1111/j.1365-3040.2006.01550.x

    Article  CAS  PubMed  Google Scholar 

  • Yazici I, Türkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49–57. doi:10.1016/j.envexpbot.2007.02.010

    Article  CAS  Google Scholar 

  • Zellnig G, Zechmann B, Perktold A (2004) Morphological and quantitative data of plastids and mitochondria within drought-stressed spinach leaves. Protoplasma 223:221–227. doi:10.1007/s00709-003-0034-2

    Article  CAS  PubMed  Google Scholar 

  • Zhang JL, Flowers TJ (2010) Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326:45–60. doi:10.1007/s11104-009-0076-0

    Article  CAS  Google Scholar 

  • Zhang JL, Shi H (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115:1–22. doi:10.1007/s11120-013-9813-6

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang J, Bi Y, Wang L, Tang L, Yu X, Ohtani M, Demura T, Zhuge Q (2014) Overexpression of PtSOS 2 enhances salt tolerance in transgenic poplars. Plant Mol Biol Rep 32:185–197. doi:10.1007/s11105-013-0640-x

    Article  CAS  PubMed  Google Scholar 

  • Zlatev ZS, Lidon FC, Ramalho JC, Yordanov IT (2006) Comparison of resistance to drought of three bean cultivars. Biol Plantarum 50:389–394. doi:10.1007/s10535-006-0054-9

    Article  CAS  Google Scholar 

  • Zou HW, Li CH, Liu HF, Zhao MM, Tian XH, Ma GH, Li ZJ (2011) ZmSPK1, a member of plant SnRK2 subfamily in maize enhances tolerance to salt in transgenic Arabidopsis. Aust J Crop Sci 5:1179–1184

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT13019), the National Natural Science Foundation of China (31222053 and 31460369) and the International Science and Technology Cooperation Program of China (2014DFG31570).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang-** Bai or **-Lin Zhang.

Additional information

Communicated by B Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, JP., Gao, HJ., Yang, HY. et al. Comparison of ultrastructural and physiological changes of potato (Solanum tuberosum L.) plantlets subjected to salt and modeling drought stresses. Acta Physiol Plant 38, 182 (2016). https://doi.org/10.1007/s11738-016-2202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2202-y

Keywords

Navigation