Log in

Glutamine synthetase and glutamate dehydrogenase in cadmium-stressed triticale seedlings

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The studies were performed on young triticale seedlings grown on a mineral medium containing 5 mM NO 3 as the nitrogen source, with the addition of 0.5 mM CdCl2. It was determined that cadmium ions accumulated mainly in the plant roots. Decreases in nitrate concentrations both in the roots and shoots of seedlings, as well as decreases in soluble protein contents with simultaneous increases in endopeptidase activity were also observed. Both in roots and shoots significant decreases in glutamic acid were noted. Toxic cadmium ion accumulation in seedlings significantly modified activity of primary nitrogen assimilating enzymes, i.e. glutamine synthetase (GS, EC 6.3.1.2) and glutamate dehydrogenase (GDH, EC 1.4.1.2). There was a significant decrease in GS activity both in roots and in shoots of the stressed plants, in comparison to plants grown without cadmium. In shoots of the control plants and plants subjected to stress two GS isoforms were discovered: cytoplasmatic (GS1) and chloroplastic (GS2). Substantial decreases in total glutamine synthetase activity in green parts of seedlings, occurring under stress conditions, result from dramatic decrease in GS2 activity (by 60 % in relation to the control plants); despite simultaneous increases in the cytoplasmatic isoform (GS1) activity by approx. 96 %.

Cadmium ions accumulating in roots and shoots of seedlings not only increased GDH activity, but also modified its coenzymatic specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barash I. B., Sadan T., Mar H. 1973. Induction of a specific izoenzyme of glutamate dehydrogenase by ammonium in oat leaves. Nature New Biol., 244: 150–152.

    Article  CAS  PubMed  Google Scholar 

  • Bielawski W. 1993. Distribution of glutamine synthetase isoforms in triticale seedlings leaves. Acta Physiol. Plant., 15 (4): 211–218.

    CAS  Google Scholar 

  • Boussama N., Ouariti O., Ghorbal M.H. 1999. Changes in growth and nitrogen assimilation in barley seedlingsunder cadmium stress. J. Plant Nutr., 22: 731–752.

    CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Burzy ski M. 1988. The uptake and accumulation of phosphorus and nitrates and the activity of nitrate reductase in cucumber seedlings. Acta Soc. Bot. Pol., 57: 77–86.

    Google Scholar 

  • Burzy ski M., Buczek J. 1994. The influence of Cd, Pb, Cu and Ni on NO3 uptake by cucumber seedlings. I. Nitrate uptake and respiration of cucumber seedlings roots treated with Cd, Pb, Cu and Ni. Acta Physiol. Plant., 16: 291–296.

    Google Scholar 

  • Casano L.M., Desimone M., Trippi V.S. 1989. Proteolytic activity at alkaline pH in oat leaves isolation aminopeptidase. Plant Physiol., 91: 1414–1418.

    CAS  PubMed  Google Scholar 

  • Cataldo D. A., Haroom H., Schreder L. E., Youngs V. L. 1975. Rapid colorimetric determination of nitrate in plants tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal., 6: 71–80.

    CAS  Google Scholar 

  • Chaffei Ch., Gouia H., Ghorbal H. M. 2003. Nitrogen metabolism in tomato plants under cadmium stress. J. Plant Nutr., 26: 1617–1634.

    Article  CAS  Google Scholar 

  • Chassaigne H., Vacchina V., Kutchan T.M., Zenk M.H. 2001. Identification of phytochelatin-related peptides in maize seedlings exposed to cadmium and obtained enzymatically in vitro. Phytochemistry 56: 657–668.

    Article  CAS  PubMed  Google Scholar 

  • Chien H-F., Kao Ch. H. 2000. Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Sci., 156: 111–115.

    Article  CAS  PubMed  Google Scholar 

  • Gouia H., Ghorbal H. M. Meyer Ch. 2000. Effect of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiol. Biochem., 38: 629–638.

    Article  CAS  Google Scholar 

  • Kłobus G., Burzy ski M., Buczek J. 2002. Heavy metals and nitrogen metabolism. Prasad M.N.V., Strzałka K. (eds.), Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Kluwer Academic Publisher, Dordrecht/Boston/London, 325–355.

    Google Scholar 

  • Krupa Z., Baszy ski T. 1995. Some aspects of heavy metal toxicity towards photosynthetic apparatus: direct and indirect effects on light and dark reactions. Acta Physiol. Plant., 17: 177–190.

    CAS  Google Scholar 

  • Kwinta J., Bartoszewicz K., Bielawski W. 2001. Purification and characteristics of glutamate dehydrogenase (GDH) from triticale roots. Acta Physiol. Plant., 23: 271–275.

    Article  Google Scholar 

  • Kwinta J., Cal K. 2005. Effects of salinity stress on the activity of glutamine synthetase and glutamate dehydrogenase in triticale seedlings. Polish J. Eviron. Studies 14: 125–130.

    CAS  Google Scholar 

  • Leon A. M., Palma J. M., Corpas F. J., Gomez M., Romero-Puertas M. C., Chatterjee D., Mateos R. M., del Rio L. A., Sandalio L. M. 2002. Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol. Biochem., 40: 813–820.

    Article  CAS  Google Scholar 

  • Llorens N., Arola L., Blade C., Mas A. 2000. Effects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinifera. Plant Sci., 160: 159–163.

    Article  CAS  PubMed  Google Scholar 

  • Loulakakis K.A., Roubelakis-Angelakis K.A. 1996. The seven NAD(H)-glutamate dehydrogenase izoenzymes exhibit similar anabolic and catabolic activities. Physiol. Plant., 96: 29–35.

    Article  CAS  Google Scholar 

  • Miflin B.J., Habash D.M. 2002. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J. Exp. Bot., 53: 979–987.

    Article  CAS  PubMed  Google Scholar 

  • O’Neal D., Joy K.W. 1973. Glutamine synthetase of pea leaves. I. Purification and pH optima. Arch. Biochem. Biophys., 159: 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Oaks A. 1994. Primary nitrogen assimilation in higher plants and its regulation. Can. J. Bot., 72: 739–750.

    CAS  Google Scholar 

  • Orzechowski S., Kwinta J., Gworek B., Bielawski W. 1997. Biochemical indicators of environmental contamination with heavy metals. Polish J. Environ. Studies 6: 47–50.

    CAS  Google Scholar 

  • Poschenrider C., Gunse B., Barcelo J. 1989. Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expanding bean leaves. Plant Physiol., 90: 1365–1371.

    Article  Google Scholar 

  • Punz W.F., Sieghardt H. 1993. The response of roots of herbaceous plant species to heavy metals. Environ. Exp. Bot., 33: 85–98.

    Article  CAS  Google Scholar 

  • Ranieri A., Castanga A., Scebba F., Careri M., Zagnoni I., Predieri G., Pagliari M., Sanita di Topi L. 2005. Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol. Biochem., 43: 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Sandalio L.M., Dalurzo H.C., Gomez M., Romero-Puertas M.C., del Rio L.A. 2001. Cadmium-induced changes in the growth and oxidative metabolism in pea plants. J. Exp. Bot., 52: 2115–2126.

    CAS  PubMed  Google Scholar 

  • Sanita di Toppi L., Gabbrielli R. 1999. Response to cadmium in higher plants. Environ. Exp. Bot., 41: 105–130.

    Article  Google Scholar 

  • Simpson R.J., Dalling M.J. 1981. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). III. Enzymology and transport of amino acids from senescing flag leaves. Planta 151: 447–456.

    Article  CAS  Google Scholar 

  • Stieger P. A., Feller U. 1997. Requirements for the light-stimulated degradation of stromal proteins in isolated pea (Pisum sativum L.) chloroplasts. J. Exp. Bot., 48: 1639–1645.

    CAS  Google Scholar 

  • Stitt M., Müller C., Matt P., Gibon Y., Carillo P., Morcuende R., Scheible W.-R., Krapp A. 2002. Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot., 53: 959–970.

    Article  CAS  PubMed  Google Scholar 

  • Wójcik M., Tukendorf A. 1999. Cd-tolerance of maize, rye and wheat seedlings. Acta Physiol. Plant., 21: 99–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Kwinta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwinta, J., Kolik, D. Glutamine synthetase and glutamate dehydrogenase in cadmium-stressed triticale seedlings. Acta Physiol Plant 28, 339–347 (2006). https://doi.org/10.1007/s11738-006-0030-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-006-0030-1

Key words

Navigation