Log in

Enhanced keratin extraction from wool waste using a deep eutectic solvent

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, the solubilization of waste coarse wool as a precursory step for the large-scale valorization of keratin was investigated using a green deep eutectic solvent (DES) based on L-cysteine and lactic acid. The investigation was undertaken via the response surface methodology and based on the Box–Behnken design for four process variables of temperature (70–110 °C), dissolution time (2–10 h), the mass of L-cysteine (0.5–2.5 g) in 20 mL of lactic acid, and wool load in the DES (0.2–0.6 g). Temperature was the most significant process variable influencing keratin yield from the waste coarse wool. The optimum keratin yield (93.77 wt.%) was obtained at the temperature of 105 °C, 8 h dissolution time, with 1.6 g L-cysteine in 20 mL of lactic acid using 0.5 g of wool. This study suggests L-cysteine and lactic acid as a green solvent with the potential to scale up keratin recovery from waste wool without significant destruction in the structure of the recovered keratin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ait-Amir B, Pougnet P, and El Hami A (2020) 6 - Meta-model development. In Embedded mechatronic systems 2 (Second Edition), El Hami A, and Pougnet P, Editors., ISTE. pp 157–187

  • Aluigi A et al (2014) Keratins extracted from Merino wool and Brown Alpaca fibres as potential fillers for PLLA-based biocomposites. J Mater Sci 49(18):6257–6269

    Article  CAS  Google Scholar 

  • Box GE, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery, vol 2. Wiley-Interscience, New York

    Google Scholar 

  • Braun M, Altan H, Beck SJAE (2014) Using regression analysis to predict the future energy consumption of a supermarket in the UK. Appl Energy 130:305–313

    Article  Google Scholar 

  • Brown EM et al (2016) Comparison of methods for extraction of keratin from waste wool. Agric Sci 7(10):670

    CAS  Google Scholar 

  • Fernández-d’Arlas B (2019) Tough and functional cross-linked bioplastics from sheep wool keratin. Scientific Reports, 9(1):14810

  • Feroz S et al (2020) Keratin - Based materials for biomedical applications. Bioactive Mater 5(3):496–509

    Article  Google Scholar 

  • Fitz-Binder C, Pham T, Bechtold T (2019) A second life for low-grade wool through formation of all-keratin composites in cystine reducing calcium chloride–water–ethanol solution. J Chem Technol Biotechnol 94(10):3384–3392

    Article  CAS  Google Scholar 

  • Ghosh A et al (2014) Thermal effects of ionic liquid dissolution on the structures and properties of regenerated wool keratin. Polym Degrad Stab 108:108–115

    Article  CAS  Google Scholar 

  • Greenwold MJ et al (2014) Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evol Biol 14(1):249

    Article  PubMed  PubMed Central  Google Scholar 

  • Haly A, Snaith J (1967) Differential thermal analysis of wool—the phase-transition endotherm under various conditions1. Text Res J 37(10):898–907

    Article  CAS  Google Scholar 

  • He J et al (2020) Highly efficient extraction of large molecular-weight keratin from wool in a water/ethanol co-solvent. Text Res J 90(9–10):1084–1093

    Article  CAS  Google Scholar 

  • Idris A et al (2014) Dissolution and regeneration of wool keratin in ionic liquids. Green Chem 16(5):2857–2864

    Article  CAS  Google Scholar 

  • Jiang Z et al (2018) Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea. Int J Biol Macromol 119:423–430

    Article  CAS  PubMed  Google Scholar 

  • Khosa M, Ullah AJJFP (2013) A sustainable role of keratin biopolymer in green chemistry: a review. J Food Process Beverages 1(1):8

    Google Scholar 

  • Kumar GS, Thamizhavel A, Girija EK (2012) Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications. Mater Lett 76:198–200

    Article  CAS  Google Scholar 

  • Lee D-H, Jeong I-J, Kim K-J (2018) A desirability function method for optimizing mean and variability of multiple responses using a posterior preference articulation approach. Qual Reliab Eng Int 34(3):360–376

    Article  Google Scholar 

  • Love B (2017) Chapter 2 - Cell expression: proteins and their characterization. In: Love B (ed) Biomaterials. Academic Press, Cambridge, pp 25–44

    Chapter  Google Scholar 

  • Maiuolo L et al (2020) Recent developments on 1,3-dipolar cycloaddition reactions by catalysis in green solvents. Catalyst 10(1):65

    Article  Google Scholar 

  • McKittrick J et al (2012) The structure, functions, and mechanical properties of keratin. JOM 64(4):449–468

    Article  Google Scholar 

  • Mohammadi R et al (2016) Extraction optimization of pepsin-soluble collagen from eggshell membrane by response surface methodology (RSM). Food Chem 190:186–193

    Article  CAS  PubMed  Google Scholar 

  • Moore KE et al (2016) Wool deconstruction using a benign eutectic melt. RSC Adv 6(24):20095–20101

    Article  CAS  Google Scholar 

  • Numata K, Kaplan DL (2011) 20 - Biologically derived scaffolds. In: Farrar D (ed) Advanced wound repair therapies. Woodhead Publishing, Delhi, pp 524–551

    Chapter  Google Scholar 

  • Nuutinen E-M et al (2019) Green process to regenerate keratin from feathers with an aqueous deep eutectic solvent. RSC Adv 9(34):19720–19728

    Article  CAS  Google Scholar 

  • Okoro OV, Sun Z, Birch J (2017) Meat processing dissolved air flotation sludge as a potential biodiesel feedstock in New Zealand: A predictive analysis of the biodiesel product properties. J Clean Prod 168:1436–1447

    Article  CAS  Google Scholar 

  • Okoro OV, Sun Z, Birch JJS (2018) Catalyst-free biodiesel production methods: a comparative technical and environmental evaluation. Sustainability 10(1):127

    Article  Google Scholar 

  • Okoro OV, Sun Z, Birch J (2019) Thermal depolymerization of biogas digestate as a viable digestate processing and resource recovery strategy. In: Advances in eco-fuels for a sustainable environment. Elsevier, pp 277–308

    Chapter  Google Scholar 

  • Polari L et al (2020) Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. Int J Biochem Cell Biol 129:105878

    Article  CAS  PubMed  Google Scholar 

  • Pourjavaheri F et al (2019) Extraction of keratin from waste chicken feathers using sodium sulfide and l-cysteine. Process Biochem 82:205–214

    Article  CAS  Google Scholar 

  • Reddy, N. and M.S. Santosh (2016) Chapter 14 - Recovery and applications of feather proteins. In Protein Byproducts, G. Singh Dhillon, Editor. Academic Press, Cambridge pp 255–274

  • Roosta M, Ghaedi M, Asfaram A (2015) Simultaneous ultrasonic-assisted removal of malachite green and safranin O by copper nanowires loaded on activated carbon: central composite design optimization. RSC Adv 5(70):57021–57029

    Article  CAS  Google Scholar 

  • Saha S et al (2019) Keratin as a biopolymer. In: Sharma S, Kumar A (eds) Keratin as a protein biopolymer: extraction from waste biomass and applications. Springer International Publishing, Cham, pp 163–185

    Chapter  Google Scholar 

  • Schindl A et al (2019) Proteins in ionic liquids: reactions. Appl Futures 7:347

    CAS  Google Scholar 

  • Shah A et al (2019) Keratin production and its applications: current and future perspective. Keratin as a protein biopolymer. Springer, pp 19–34

    Chapter  Google Scholar 

  • Shavandi A et al (2015) Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering. Int J Biol Macromol 80:445–454

    Article  CAS  PubMed  Google Scholar 

  • Shavandi A, Carne A, Bekhit AA, Bekhit AE-DA (2017a) An improved method for solubilisation of wool keratin using peracetic acid. J Environ Chem Eng 5(2):1977–1984

    Article  CAS  Google Scholar 

  • Shavandi A., Silva TH, Bekhit AA, Bekhit AE-DA (2017b) Keratin: dissolution, extraction and biomedical application. Biomater Sci 5(9):1699–1735

    Article  CAS  PubMed  Google Scholar 

  • Shavandi A et al (2021) A sustainable solvent based on lactic acid and l-cysteine for the regeneration of keratin from waste wool. Green Chem 23(3):1171–1174

    Article  CAS  Google Scholar 

  • Tonin C et al (2007) Thermal and structural characterization of poly(ethylene-oxide)/keratin blend films. J Therm Anal Calorim 89(2):601–608

    Article  CAS  Google Scholar 

  • Vasileva-Tonkova E, Gousterova A, Neshev G (2009) Ecologically safe method for improved feather wastes biodegradation. Int Biodeterior Biodegrad 63(8):1008–1012

    Article  CAS  Google Scholar 

  • Wang D, Tang R-C (2018) Dissolution of wool in the choline chloride/oxalic acid deep eutectic solvent. Mater Lett 231:217–220

    Article  CAS  Google Scholar 

  • Wang K et al (2016a) Extracting keratin from wool by using L-cysteine. Green Chem 18(2):476–481

    Article  CAS  Google Scholar 

  • Wang K et al (2016b) Extracting keratin from wool by using L-cysteine. Green Chem 18(2):476–481

    Article  CAS  Google Scholar 

  • Xu W et al (2006) Modification of wool fiber using steam explosion. Eur Polymer J 42(9):2168–2173

    Article  CAS  Google Scholar 

  • Yamauchi K, Yamauchi A, Kusunoki T, Kohda A, Konishi Y (1996) Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J Biomed Mater Res: an off J Soc Biomater Jpn Soc Biomater 31(4):439–444

    Article  CAS  Google Scholar 

  • Zhang P et al (2019) Disulfide bond reconstruction: a novel approach for grafting of thiolated chitosan onto wool. Carbohydr Polym 203:369–377

    Article  CAS  PubMed  Google Scholar 

  • Zhao W et al (2012) Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam flash-explosion. Green Chem 14(12):3352–3360

    Article  CAS  Google Scholar 

  • Zoccola M, Aluigi A, Tonin C (2009) Characterisation of keratin biomass from butchery and wool industry wastes. J Mol Struct 938(1):35–40

    Article  CAS  Google Scholar 

  • Zoccola M et al (2012) Microwave-assisted chemical-free hydrolysis of wool keratin. Text Res J 82(19):2006–2018

    Article  Google Scholar 

Download references

Acknowledgements

The first author (O.V.O) gratefully acknowledges the financial support of Wallonia-Brussels International via the Wallonie-Bruxelles International (WBI) excellence Postdoctoral fellowship. H.J acknowledges Innoviris Brussels, Belgium (https://innoviris.brussels) under the project 2019–BRIDGE–4: RE4BRU for his PhD fellowship. The content is solely the responsibility of the authors and does not represent the official views of the above-mentioned fellowship agencies.

Funding

The research did not receive external funding.

Author information

Authors and Affiliations

Authors

Contributions

O.V.O., L.N., and A.S. contributed to conceptualization, O.V.O., H.J., and P.H. were involved in methodology, O.V.O. provided software, M.H. and A.S. contributed to validation, O.V.O., H.J., P.H., L.N., H.A., and A.S. were involved in writing—original draft preparation, and O.V.O. H.J., P.H., L.N., H.A., and A.S contributed to writing—review and editing.

Corresponding authors

Correspondence to Lei Nie or Amin Shavandi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okoro, O.V., Jafari, H., Hobbi, P. et al. Enhanced keratin extraction from wool waste using a deep eutectic solvent. Chem. Pap. 76, 2637–2648 (2022). https://doi.org/10.1007/s11696-021-02029-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-02029-4

Keywords

Navigation