Log in

Feasible study on poly(Pyrrole-co-Pyrrole-3-Carboxylic Acid)-modified electrode for detection of 17β-Estradiol

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Preparation and characterizations of poly(pyrrole-co-pyrrole-3-carboxylic acid) (PPYPA) film on the surface of screen printed carbon electrode (SPE) has been discussed in the manuscript. Different ratios of monomer for PPYPA preparation will be applied to determine 17β-estradiol using cyclic voltammetry. The SPE was modified with PPYPA film using an electrodeposition method and followed by the immobilization of 75mer aptamer specifically binding to 17β-estradiol as a model study. The materials were characterized by cyclic voltammetry, Fourier transform infrared, electrochemical impedance spectroscopy and scanning electron microscopy. The redox peak potential was found to be at 0.13 V and 0.26 V. The appearance of cauliflower structure in the SEM image which indicates PPYPA film was formed on SPE. Moreover, PPYPA/SPE exhibited a lower charge transfer resistance (Rct) compared to bare SPE indicates a good conductivity of film. Our study shows that 3:1 ratio between PPY and pyrrole-3-carboxylic acid provided highly active surface area for the immobilization of 75mer aptamer for 17β-estradiol detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhond M, Jangi SRH, Barzegar S, Absalan G (2020) Introducing a nanozyme-based sensor for selective and sensitive detection of mercury (II) using its inhibiting effect on production of an indamine polymer through a stable n-electron irreversible system. Chem Pap 74:1321–1330

    Article  CAS  Google Scholar 

  • Alagappan M, Immanuel S, Sivasubramanian R, Kandaswamy A (2020) Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network. Arab J Chem 13:2001–2010

    Article  CAS  Google Scholar 

  • Alsager OA, Kumar S, Zhu B, Travas-Sejdic J, McNatty KP, Hodgkiss JM (2015) Ultrasensitive colorimetric detection of 17β-estradiol: the effect of shortening DNA aptamer sequences. Anal Chem. https://doi.org/10.1021/acs.analchem.5b00335

    Article  PubMed  Google Scholar 

  • Apetrei RM, Carac G, Bahrim G, Ramanaviciene A, Ramanavicius A (2018) Modification of Aspergillus niger by conducting polymer, polypyrrole, and the evaluation of electrochemical properties of modified cells. Bioelectrochemistry 121:46–55

    Article  CAS  Google Scholar 

  • Borchardt I, Oschartz M, Kaskel S (2014) Tailoring porosity in carbon materials for capacitor applications. Mater Horizons 1(2):157–168

    Article  CAS  Google Scholar 

  • Cinti S, Minotti C, Moscone D, Palleschi G, Arduini F (2017) Fully integrated ready to use paper based electrochemical biosensor to detect nerve agents. Biosens Bioelectron 93:46–51

    Article  CAS  Google Scholar 

  • Demirkan B, Bozkurt S, Cellat K (2020) Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine and uric acid. Sci Rep 10:2946. https://doi.org/10.1038/s41598-020-59935-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dharmadasa IM, Haigh J (2006) Strengths and advantages of electrodeposition as a semiconductor growth technique for applications in microelectronic devices. J Electrochem Soc 153(1):G47–G52

    Article  CAS  Google Scholar 

  • Du X, Dai L, Jiang D, Li H, Hao N, You T, Mao H, Wang K (2017) Gold nanrods Plasmon-enhanced photoelectrochemical aptasensing based on hematite/N-doped graphene films for ultrasenstitve analysis of 17β-estradiol. Biosens Bioelectron 91:706–713

    Article  CAS  Google Scholar 

  • Essousi H, Barhoumi H, Bibani M, Ktari N, Wendler F, Al-Hamry A, Kanoun O (2019) Ion imprinted electrochemicals sensor based on copper nanoparticles-polyaniline matrix for nitrate detection. J Sens 4257125:1–14

    Article  Google Scholar 

  • Fan L, Zhao G, Shi H, Liu M (2015) A simple and label-free aptasensor based on nickel hexacyanoferrate nanoparticles as signal probe for highly sensitivite detection of 17β-estradiol. Biosens Bioelectron 68:303–309

    Article  CAS  Google Scholar 

  • Gomez EER, de Souza NE, Galinaro CA, Arriveti LOR, de Assis JB, Tremiliosi-Filho G (2016) Electrochemical degradation of butyl paraben on platinum and glassy carbon electrodes. J Electroanal Chem 769:124–130

    Article  Google Scholar 

  • Gunes M, Karakaya S, Dilgin Y (2020) Development of an interference-minimized amperometric-FIA glucose biosensor at a pyrocatechol violet/glucose dehydrogenase-modified graphite pencil electrode. Chem Pap. https://doi.org/10.1007/s11696-109-01036-w

    Article  Google Scholar 

  • Iordanescu A, Tertis M, Cemat A, Suciu M, Sandulescu R, Cristea C (2018) Poly(pyrrole-3-carboxylic acid) based nanostructure platforms for the detection of carcinoembryonic antigen. Electroanalysis 30:1–8

    Article  Google Scholar 

  • Karazehir T, Ates M, Sarac AS (2016) Covalent immobilization of urease on poly(pyrrole-3-carboxylic acid): electrochemical impedance and mott schotty study. J Electrochem Soc 163(8):B435–B444

    Article  CAS  Google Scholar 

  • Kazane I, Gorgy K, Gondran C, Spinelli N, Zazoua A, Defrancq E, Cosnier S (2018) Highly sensitive bisphenol A electrochemical aptasensor based on poly(pyrrole-nitrilotriacetic acid)-aptamer film. Anal Chem 88:7268–7273

    Article  Google Scholar 

  • Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB (2007) Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip. Biosens Bioelectron 22:2525–2531

    Article  CAS  Google Scholar 

  • Kim JM, Yang JC, Park JY (2015) Quartz crystal microbalance (QCM) gravimetric sensing of theophylline via molecularly imprinted microporous polypyrrole copolymers. Sens Actuators B: Chem 206:50–55

    Article  CAS  Google Scholar 

  • Kulicek J, Gemelner P, Omastova M, Micusik M (2018) Preparation of polypyrrole/multiwalled carbon nanotubes hybrids by electropolymerization combined with a coating method for counter electrodes in dye-sensitized solar cells. Chem Pap. https://doi.org/10.1007/s11696-018-0476-9

    Article  Google Scholar 

  • Lampman GM, Pavia D, Kriz GS, Vyvyan JR (2010) Spectroscopy international edition, 4th edn. Brooks/Cole Cengage Learning, USA

    Google Scholar 

  • Li CM, Chen W, Yang X, Sun CQ, Gao C, Zheng ZX, Sawyer J (2005) J Frontier Biosci 10:2518–2526

    Article  CAS  Google Scholar 

  • Li Y, Jiang C, Han W (2020) Extending the pressure sensing range of porous polypyrrole with multiscale microstructures. Nanoscale 12:2081–2088

    Article  CAS  Google Scholar 

  • Munoz J, Cespedes F, Baeza M (2015) Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorine. Microchem J 122:189–196

    Article  CAS  Google Scholar 

  • Nameghi MA, Danesh NM, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM (2019) An ultrasensitive electrochemical sensor 17β-estradiol using split aptamers. Anal Chim Acta 1065:107–112

    Article  CAS  Google Scholar 

  • Oluwo RA, Ndangili PM, Baleg AA, Ikpo CO, Njomo N, Baker P, Iwuoha E (2011) Spectroelectrochemical dynamics of dendritic poly(propyleneimine)-polythiophene star copolymer aptameric 17β-estradiol. Int J Electrochem Sci 6:1686–1708

    Google Scholar 

  • Otero TF, Herrasti P, Ocón P, Alves CR (1998) Electrogeneration of polypyrrole-carboxymethylcellulose composites: electrochemical, microgravimetric and morphological studies. Electrochim Acta 43:1089–1100

    Article  CAS  Google Scholar 

  • Ozcan A, Iikbas S (2015) Poly(pyrrole-3-carboxylic acid)-modified pencil graphite electrode for the determination of serotonin in biological samples by adsorptive strip** voltammetry. Sens Actuators B: Chem 215:518–524

    Article  CAS  Google Scholar 

  • Ozkorucuklu SP, Sahin Y, Alsancak G (2011) Determination of sulfamethoxazole in pharmaceutical formations by flow injection system/HPLC with potentiometric detection using polypyrrole electrode. J Braz Chem Soc 22(11):2171–2177

    Article  CAS  Google Scholar 

  • Poverenov E, Li M, Bitler A, Bendikov M (2010) Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films. Chem Mater 22:4019–4025

    Article  CAS  Google Scholar 

  • Rozi N, Ahmad A, Lee YH, Loh KS, Hanifah SA (2018) Electrochemical sunset yellow biosensor based on photocured polyacrylamide membrane for food dye monitoring. Sensors 18(101):1–17

    Google Scholar 

  • Sadrolhossein AR, Nia PM, Shafie S, Shameli K, Mahdi MA (2020) Polypyrrole-chitosan-CaFe2O4 layer sensor for detection of anionic and cationic dye using surface plasmon resonance. Int J Polymer Sci 3489509:1–10

    Article  Google Scholar 

  • Sakthivel M, Sivakumar M, Chen SM, Pandi K (2018) Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) on terbium hexacyanoferrate for sensitive determination of tartrazine. Sens Actuators B: Chem 256:195–203

    Article  CAS  Google Scholar 

  • Spychalska K, Zajac D, Cabaj J (2020) Electrochemical biosensor for detection of 17β-estradiol using semi-conducting polymer and horseradish peroxidase. RSC Advances 10:9079–9087

    Article  CAS  Google Scholar 

  • Truong LTN, Chikae M, Ukita Y, Takamura Y (2011) Labelless impedance immunosensor based on polypyrrole-pyrolecarboxylic acid copolymer for hCG detection. Talanta 85:2576–2580

    Article  CAS  Google Scholar 

  • Wang J, Xu YL, Wang J, Du XF, **ao F, Li JB (2010) Towards a high specific power and high stability polypyrrole supercapasitiors. Synth Met 161(11–12):1141–1144

    Google Scholar 

  • Wang J, Xu Y, Zhu J, Ren P (2012) Electrochemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density. J Power Sources 208:138–143

    Article  CAS  Google Scholar 

  • Wang J, Li X, Du X, Wang J, Ma H, **g X (2016) Polypyrrole composites with carbon materials for supercapasitors. Chem Pap. https://doi.org/10.1007/s11696-016-0048-9

    Article  Google Scholar 

  • Wilson L, Wyk JV, Rassie C, Ross N, Christopher S, Makelane HR, Bilibana M, Waryo T, Mapolite S, Baker PG, Iwuoha EI (2015) Electrochemical immunosensor based on the interactions between polypyrrole and cobalt(II) salicyaldiimine denrimer. Int J Electrochem Sci 10:3207–3222

    CAS  Google Scholar 

  • Yeu T, Yin KM, Carbajal J, White RE (1991) Chemical characterization of electronic conductive polypyrrole on cyclic voltammograms. J Electrochem Soc 138(10):2869–2877

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universiti Kebangsaan Malaysia through Research University Grant (GUP-2018-025). We also thank the Chemical Sensor and Biosensor Research Group, Centre of Research and Instrumentation Management (CRIM) and Universiti Kebangsaan Malaysia for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharina Abu Hanifah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 261 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozi, N., Hanifah, S.A., Zaid, M.H.M. et al. Feasible study on poly(Pyrrole-co-Pyrrole-3-Carboxylic Acid)-modified electrode for detection of 17β-Estradiol. Chem. Pap. 75, 3493–3503 (2021). https://doi.org/10.1007/s11696-021-01597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01597-9

Keywords

Navigation