Log in

The Evolution of Range Sizes in Mammals and Squamates: Heritability and Differential Evolutionary Rates for Low- and High-Latitude Limits

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Species geographical ranges are at the core of many areas in evolutionary biology, yet empirical studies on the evolution of geographical ranges have been limited. Here, we integrate information on the phylogenetic relationships and geographical distribution of 3097 species of mammal (Artiodactyla, Carnivora, Chiroptera, Marsupialia, and Primates) and squamate (Anguimorpha, Gekkota, Iguania, Lacertoidea, Scincoidea, and Serpentes) to assess the degree of evolutionary “heritability” (i.e., phylogenetic autocorrelation) in range sizes and the extent to which range limits at higher and lower latitudes share similar evolutionary rates. Phylogenetic autocorrelation was highly variable among clades in the case of range size, but invariably high for range latitudinal centroid and range limits. Moreover, rates of evolution of high-latitude limits were 1.6–4 times faster than low-latitude limits. These results are consistent with previous experimental studies showing that heat tolerance is conserved across lineages, whereas tolerance to cold temperatures is more labile. The distinct evolutionary rates of low- and high-latitude limits has important implications for our understanding of the evolution of geographical ranges, as well as to understand how they could be affected by predicted anthropogenic climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfaro, M. E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D. L., et al. (2009). Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences, 106(32), 13410–13414. doi:10.1073/pnas.0811087106.

    Article  CAS  Google Scholar 

  • Araújo, M. B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P. A., Valladares, F., & Chown, S. L. (2013). Heat freezes niche evolution. Ecology Letters, 16(9), 1206–1219. doi:10.1111/ele.12155.

    Article  PubMed  Google Scholar 

  • Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., et al. (2007). The delayed rise of present-day mammals. Nature, 446(7135), 507–512. doi:10.1038/nature05634.

    Article  CAS  PubMed  Google Scholar 

  • Blackburn, T. M., & Gaston, K. J. (1996). Spatial patterns in the geographic range sizes of bird species in the new world. Philosophical Transactions of the Royal Society B: Biological Sciences, 351(1342), 897–912. doi:10.1098/rstb.1996.0083.

    Article  Google Scholar 

  • Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57(4), 717–745. doi:10.1111/j.0014-3820.2003.tb00285.x.

    Article  PubMed  Google Scholar 

  • Borregaard, M. K., Gotelli, N. J., & Rahbek, C. (2012). Are range-size distributions consistent with species-level heritability? Evolution, 66(7), 2216–2226. doi:10.1111/j.1558-5646.2012.01581.x.

    Article  PubMed  Google Scholar 

  • Cahill, A. E., Aiello-Lammens, M. E., Caitlin Fisher-Reid, M., Hua, X., Karanewsky, C. J., Ryu, H. Y., et al. (2014). Causes of warm-edge range limits: Systematic review, proximate factors and implications for climate change. Journal of Biogeography, 41(3), 429–442. doi:10.1111/jbi.12231.

    Article  Google Scholar 

  • Cardillo, M. (2015). Geographic range shifts do not erase the historic signal of speciation in mammals. The American Naturalist, 185(3), 343–353. doi:10.1086/679663.

    Article  PubMed  Google Scholar 

  • Carotenuto, F., Barbera, C., & Raia, P. (2010). Occupancy, range size, and phylogeny in Eurasian Pliocene to recent large mammals. Paleobiology, 36(3), 399–414. doi:10.1666/09059.1.

    Article  Google Scholar 

  • Clavel, J., Escarguel, G., & Merceron, G. (2015). mvMORPH: An R package for fitting multivariate evolutionary models to morphometric data. Methods in Ecology and Evolution, 6(11), 1311–1319. doi:10.1111/2041-210x.12420.

    Article  Google Scholar 

  • Cunningham, H. R., Rissler, L. J., Buckley, L. B., & Urban, M. C. (2016). Abiotic and biotic constraints across reptile and amphibian ranges. Ecography, 39(1), 1–8. doi:10.1111/ecog.01369.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F. (2004). Macroecology and the hierarchical expansion of evolutionary theory. Global Ecology and Biogeography, 13(1), 1–5. doi:10.1111/j.1466-882x.2004.00066.x.

    Article  Google Scholar 

  • FitzJohn, R. G. (2012). Diversitree: Comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution, 3(6), 1084–1092. doi:10.1111/j.2041-210x.2012.00234.x.

    Article  Google Scholar 

  • Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. The American Naturalist, 160(6), 712–726. doi:10.1086/343873.

    Article  CAS  PubMed  Google Scholar 

  • Freckleton, R. P., & Jetz, W. (2009). Space versus phylogeny: Disentangling phylogenetic and spatial signals in comparative data. Proceedings of the Royal Society B: Biological Sciences, 276(1654), 21–30. doi:10.1098/rspb.2008.0905.

    Article  PubMed  Google Scholar 

  • Fritz, S. A., Bininda-Emonds, O. R. P., & Purvis, A. (2009). Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics.” Ecology Letters, 12(6), 538–549. doi:10.1111/j.1461-0248.2009.01307.x.

    Article  PubMed  Google Scholar 

  • Gaston, K. J. (1998). Species-range size distributions: Products of speciation, extinction and transformation. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1366), 219–230. doi:10.1098/rstb.1998.0204.

    Article  Google Scholar 

  • Gaston, K. J., & He, F. (2002). The distribution of species range size: A stochastic process. Proceedings of the Royal Society B: Biological Sciences, 269(1495), 1079–1086. doi:10.1098/rspb.2002.1969.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gittleman, J. L., & Kot, M. (1990). Adaptation: Statistics and a null model for estimating phylogenetic effects. Systematic Biology, 39(3), 227. doi:10.2307/2992183.

    Google Scholar 

  • Grantham, T. A. (1995). Hierarchical approaches to Macroevolution: Recent work on species selection and the “effect hypothesis.” Annual Review of Ecology and Systematics, 26, 301–321. doi:10.2307/2097209.

    Article  Google Scholar 

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: Investigating evolutionary radiations. Bioinformatics (Oxford, England), 24(1), 129–131. doi:10.1093/bioinformatics/btm538.

    Article  CAS  Google Scholar 

  • Hunt, G., Roy, K., & Jablonski, D. (2005). Species-level heritability reaffirmed: A comment on “On the heritability of geographic range Sizes.” The American Naturalist, 166(1), 129–135. doi:10.1086/430722.

    Article  PubMed  Google Scholar 

  • IUCN. (2013). The IUCN Red List of Threatened Species. http://www.iucnredlist.org.

  • Jablonski, D. (1987). Heritability at the species level: Analysis of geographic ranges of Cretaceous mollusks. Science, 238(4825), 360–363. doi:10.1126/science.238.4825.360.

    Article  CAS  PubMed  Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491(7424), 444–448. doi:10.1038/nature11631.

    Article  CAS  PubMed  Google Scholar 

  • Jones, K. E., Sechrest, W., & Gittleman, J. L. (2005). Age and area revisited: identifying global patterns and implications for conservation. In A. Purvis, J. L. Gittleman & T. M. Brooks (Eds.), Phylogeny and conservation (pp. 141–165). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Komsta, L., & Novomestky, F. (2015). moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. http://CRAN.R-project.org/package=moments.

  • Lawson, A. M., & Weir, J. T. (2014). Latitudinal gradients in climatic-niche evolution accelerate trait evolution at high latitudes. Ecology Letters, 17(11), 1427–1436. doi:10.1111/ele.12346.

    Article  PubMed  Google Scholar 

  • Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 1–18. doi:10.2307/2096764.

    Article  Google Scholar 

  • Louthan, A. M., Doak, D. F., & Angert, A. L. (2015). Where and when do species interactions set range limits? Trends in Ecology & Evolution, 30(12), 780–792. doi:10.1016/j.tree.2015.09.011.

    Article  Google Scholar 

  • MacArthur, R. H. (1972). Geographical ecology: Patterns in the distribution of species. New York: Harper & Row.

    Google Scholar 

  • Machac, A., Zrzavý, J., & Storch, D. (2011). Range size heritability in Carnivora is driven by geographic constraints. The American Naturalist, 177(6), 767–779. doi:10.1086/659952.

    Article  PubMed  Google Scholar 

  • Meredith, R. W., Janecka, J. E., Gatesy, J., Ryder, O. A., Fisher, C. A., Teeling, E. C., et al. (2011). Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science, 334(6055), 521–524. doi:10.1126/science.1211028.

    Article  CAS  PubMed  Google Scholar 

  • Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., et al. (2007). Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecology Letters, 10(4), 315–331. doi:10.1111/j.1461-0248.2007.01020.x.

    Article  PubMed  Google Scholar 

  • Mouillot, D., & Gaston, K. (2009). Spatial overlap enhances geographic range size conservatism. Ecography, 32(4), 671–675. doi:10.1111/j.1600-0587.2009.05679.x.

    Article  Google Scholar 

  • Munkemuller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., Thuiller, T. (2012). How to measure and test phylogenetic signal. Methods Ecol. Evol, 3, 743–756.

    Article  Google Scholar 

  • Olalla-Tárraga, M. Á., McInnes, L., Bini, L. M., Diniz-Filho, J. A. F., Fritz, S. A., Hawkins, B. A., et al. (2011). Climatic niche conservatism and the evolutionary dynamics in species range boundaries: Global congruence across mammals and amphibians. Journal of Biogeography, 38(12), 2237–2247. doi:10.1111/j.1365-2699.2011.02570.x.

    Article  Google Scholar 

  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884. doi:10.1038/44766.

    Article  CAS  PubMed  Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics (Oxford, England), 20(2), 289–290. doi:10.1093/bioinformatics/btg412.

    Article  CAS  Google Scholar 

  • Pianka, E. R. (1970). Comparative autecology of the lizard Cnemidophorus tigris in different parts of its georgraphic range. Ecology, 51(4), 703–720. doi:10.2307/1934053.

    Article  Google Scholar 

  • Pigot, A. L., Phillimore, A. B., Owens, I. P. F., & Orme, C. D. L. (2010). The shape and temporal dynamics of phylogenetic trees arising from geographic speciation. Systematic Biology, 59(6), 660–673. doi:10.1093/sysbio/syq058.

    Article  PubMed  Google Scholar 

  • Pigot, A. L., & Tobias, J. A. (2015). Dispersal and the transition to sympatry in vertebrates. Proceedings of the Royal Society B: Biological Sciences, 282(1799), 20141929–20141929. doi:10.1098/rspb.2014.1929.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pither, J. (2003). Climate tolerance and interspecific variation in geographic range size. Proceedings of the Royal Society B: Biological Sciences, 270(1514), 475–481. doi:10.1098/rspb.2002.2275.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyron, M. (1999). Relationships between geographical range size, body size, local abundance, and habitat breadth in North American suckers and sunfishes. Journal of Biogeography, 26(3), 549–558. doi:10.1046/j.1365-2699.1999.00303.x.

    Article  Google Scholar 

  • Pyron, R., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13(1), 93. doi:10.1186/1471-2148-13-93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyron, R. A., & Burbrink, F. T. (2014). Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. Ecology Letters, 17(1), 13–21. doi:10.1111/ele.12168.

    Article  PubMed  Google Scholar 

  • R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.

  • Rabosky, D. L., & Goldberg, E. E. (2015). Model inadequacy and mistaken inferences of trait-dependent speciation. Systematic Biology, 64(2), 340–355. doi:10.1093/sysbio/syu131.

    Article  CAS  PubMed  Google Scholar 

  • Rabosky, D. L., Grundler, M., Anderson, C., Title, P., Shi, J. J., Brown, J. W., et al. (2014). BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution, 5(7), 701–707. doi:10.1111/2041-210x.12199.

    Article  Google Scholar 

  • Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223. doi:10.1111/j.2041-210x.2011.00169.x.

    Article  Google Scholar 

  • Ricklefs, R. E. (1987). Community diversity: Relative roles of local and regional processes. Science, 235(4785), 167–171. doi:10.1126/science.235.4785.167.

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs, R. E., & Latham, R. E. (1992). Intercontinental correlation of geographical ranges suggests stasis in ecological traits of relict genera of temperate perennial herbs. The American Naturalist, 139(6), 1305–1321. doi:10.2307/2462343.

    Article  Google Scholar 

  • Saupe, E. E., Qiao, H., Hendricks, J. R., Portell, R. W., Hunter, S. J., Soberón, J., & Lieberman, B. S. (2015). Niche breadth and geographic range size as determinants of species survival on geological time scales. Global Ecology and Biogeography, 24(10), 1159–1169. doi:10.1111/geb.12333.

    Article  Google Scholar 

  • Stanley, S. M. (1975). A theory of evolution above the species level. Proceedings of the National Academy of Sciences, 72(2), 646–650. Retrieved March 1, 2016 from http://www.pnas.org/content/72/2/646.short.

  • Villalobos, F., Rangel, T. F., & Diniz-Filho, J. A. F. (2013). Phylogenetic fields of species: Cross-species patterns of phylogenetic structure and geographical coexistence. Proceedings of the Royal Society B: Biological Sciences, 280(1756), 20122570–20122570. doi:10.1098/rspb.2012.2570.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner, P. J., & Erwin, D. H. (1995). Phylogenetic patterns as tests of speciation hypotheses. In D. H. Erwin & R. L. Anstey (Eds.), New approaches to speciation in the fossil record (pp. 87–122). New York: Columbia University Press.

    Google Scholar 

  • Waldron, A. (2007). Null models of geographic range size evolution reaffirm its Heritability. The American Naturalist, 170(2), 221–231. doi:10.1086/518963.

    Article  PubMed  Google Scholar 

  • Webb, T. J., & Gaston, K. J. (2003). On the heritability of geographic range sizes. The American Naturalist, 161(4), 553–566. doi:10.1086/368296.

    Article  PubMed  Google Scholar 

  • Webb, T. J., & Gaston, K. J. (2005). Heritability of geographic range sizes revisited: A reply to Hunt et al. The American Naturalist, 166(1), 136–143. doi:10.1086/430726.

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Duran, Michael K. Borregaard and an anonymous reviewer for valuable comments on an earlier version of this manuscript. MRP was supported by a CNPq/MCT grant (571334/2008-3). ALSM is supported by doctoral fellowship from CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio R. Pie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17360 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pie, M.R., Meyer, A.L.S. The Evolution of Range Sizes in Mammals and Squamates: Heritability and Differential Evolutionary Rates for Low- and High-Latitude Limits. Evol Biol 44, 347–355 (2017). https://doi.org/10.1007/s11692-017-9412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-017-9412-0

Keywords

Navigation