Log in

Carbon fluxes and their response to environmental variables in a Dahurian larch forest ecosystem in northeast China

  • Research Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. The continuous carbon fluxes were measured from May 2004 to April 2005 in the Dahurian larch forest in Northeast China using an eddy covariance method. The results showed that the ecosystem released carbon in the dormant season from mid-October 2004 to April 2005, while it assimilated CO2 from the atmosphere in the growing season from May to September 2004. The net carbon sequestration reached its peak of 112 g·m−2·month−1 in June 2004 (simplified expression of g (carbon)·m−2·month−1) and then gradually decreased. Annually, the larch forest was a carbon sink that sequestered carbon of 146 g·m−2·a−1 (simplified expression of g (carbon)·m−2·a−1) during the measurements. The photosynthetic process of the larch forest ecosystem was largely affected by the vapor pressure deficit (VPD) and temperature. Under humid conditions (VPD < 1.0 kPa), the gross ecosystem production (GEP) increased with increasing temperature. But the net ecosystem production (NEP) showed almost no change with increasing temperature because the increment of GEP was counterbalanced by that of the ecosystem respiration. Under a dry environment (VPD > 1.0 kPa), the GEP decreased with the increasing VPD at a rate of 3.0 μmol·m−2·s·kPa−1 and the ecosystem respiration was also enhanced simultaneously due to the increase of air temperature, which was linearly correlated with the VPD. As a result, the net ecosystem carbon sequestration rapidly decreased with the increasing VPD at a rate of 5.2 μmol·m−2·s−1·kPa−1. Under humid conditions (VPD < 1.0 kPa), both the GEP and NEP were obviously restricted by the low air temperature but were insensitive to the high temperature because the observed high temperature value comes within the category of the optimum range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldocchi DD. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob Change Biol, 9: 479–492.

    Article  Google Scholar 

  • Baldocchi DD, Hicks BB, Meyers TP. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69: 1331–1340.

    Article  Google Scholar 

  • Baldocchi DD, Vogel CA. 1996. A comparative study of water vapor, energy and CO2 flux densities above and below a temperate broadleaf and boreal pine forest. Tree Physiol, 16: 5–16.

    PubMed  Google Scholar 

  • Baldocchi DD, Vogel CA, Hall B. 1997. Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agr For Meteorol, 83: 147–170.

    Article  Google Scholar 

  • Barford CC, Wofsy SC, Goulden ML, Munger JW, Pyle EH, Urbanski SP, Hutyra L, Salesaka SR, Fitzjarrald D, Moore K. 2001. Factors controlling long-and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science, 294: 1688–1691.

    Article  PubMed  CAS  Google Scholar 

  • Brooks A, Farquhar GD. 1985. Effects of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta, 165: 397–406.

    Article  CAS  Google Scholar 

  • Chen WJ, Black TA, Yang PC, Barr AG, Neumann HH, Nesic Z, Blanken PD, Novak MD, Eley J, Ketler RJ, Cuenca R. 1999. Effect of climatic variability on the annual carbon sequestration by a boreal aspen forest. Glob. Change Biol, 5: 41–53.

    Article  CAS  Google Scholar 

  • Clark KL, Gholz HL, Moncrieff JB, Cropley F, Loescher HW. 1999. Environmental controls over net exchanges of carbon dioxide from contrasting Florida ecosystems. Ecol Appl, 9: 936–948.

    Article  Google Scholar 

  • Denning AS, Fung IY, Randall D. 1995. Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land and biota. Nature, 376: 240–243.

    Article  CAS  Google Scholar 

  • Falge E, Baldocchi DD, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guðmundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw UKT, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Velentini R, Wilson K, Wofsy S. 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agr Forest Meteorol, 113: 53–74.

    Article  Google Scholar 

  • Fan S-M, Goulden ML, Munger JW, Daube BC, Bakwin PS, Wofsy SC, Amthor JS, Fitzjarrald DR, Moor KE, Moor TR. 1995. Environmental controls on the photosynthesis and respiration of a boreal lichen woodland: A growing season of whole-ecosystem exchange measurements by eddy correlation. Oecologia, 102: 443–452.

    Article  Google Scholar 

  • Fang **gyun, Tang Yanhong, Koizumi H, Bekku, Y. 1999. The evidence of CO2 emission from soil surface in a high-latitude region in winter. Sci China Ser D-Earth Sci, 42: 378–382.

    CAS  Google Scholar 

  • Goulden ML, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW, Wofsy SC. 1997. Physiological responses of a black spruce forest to weather. J Geophys Res, 102: 28987–28996.

    Article  CAS  Google Scholar 

  • Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC. 1996. Measurements of carbon sequestration by long-tern eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology, 2: 169–182.

    Article  Google Scholar 

  • Gower ST, Richards JH. 1990. Larches: Deciduous conifers in an evergreen world. Bioscience, 40: 818–826.

    Article  Google Scholar 

  • Hirano T, Hirata R, Fu**uma Y, Saigusa N, Yamamoto S, Harazono Y, Takada M, Inukai K, Inoue G. 2003. CO2 and water vapor exchange of a larch forest in northern Japan. Tellus Ser B: 55: 244–257.

    Article  Google Scholar 

  • Hollinger DY, Kelliher FM, Byers JN, Hunt JE, McSeveny TM, Weir PL. 1994. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology, 75: 134–150.

    Article  Google Scholar 

  • Hollinger DY, Kelliher FM, Schulze ED, Bauer G, Arneth A, Byers JN, Hunt JE, McSeveny TM, Kobak KI, Milukova I, Sogatchev A, Tatarinov F, Varlargin A, Ziegler W, Vygodskaya NN. 1998. Forest-atmosphere carbon dioxide exchange in eastern Siberia. Agr Forest Meteorol, 90: 291–306.

    Article  Google Scholar 

  • IGBP Terrestrial Carbon Working Group. 1998. The Terrestrial Carbon Cycle: Implications for the Kyoto Protocol. Science, 280: 1393–1394.

    Article  Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grunwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik U, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forest. Glob Change Biol, 7: 269–278.

    Article  Google Scholar 

  • Jiang YL, Zhou GS. 2002. Carbon balance of Larix gmelini forest and impacts of management practices. Acta Phytoecologica Sinica, 26: 317–322.

    CAS  Google Scholar 

  • Kajimoto T, Matsuura Y, Osawa A, Prokushkin AS, Sofronov MA, Abaimov AP. 2003. Root system development of Larix gmelinii trees by micro-scale conditions of permafrost soils in central Siberia. Plant Soil, 255: 281–292.

    Article  CAS  Google Scholar 

  • Kim J, Verma SB. 1990. Carbon dioxide exchange in a temperate grassland ecosystem. Bound-Layer Meteor, 52: 135–169.

    Article  Google Scholar 

  • Lee XH. 1998. On micrometeorological observations of surface-air exchange over tall vegetation. Agric Forest Meteorol, 91: 39–49.

    Article  Google Scholar 

  • Li Bo, Yang Chi, Lin Peng. 2000. Ecology, Bei**g: Higher Education Press, p432. (in Chinese)

    Google Scholar 

  • Li SG, Asanuma J, Kotani A, Eugster W, Davaa G, Oyunbaatar D, Sugita M. 2005. Year-round measurement of net ecosystem CO2 flux over a montane larch forest in Mongolia. J Geophys Res, 110: D09303, doi: 10.1029/2004JD-005453.

  • Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK. 2001. A large carbon sink in the woody biomass of Northern forests. Proceedings of the National Academy of Sciences USA (PNAS), 98: 14784–14789.

    Article  CAS  Google Scholar 

  • Saigusa N, Yamamoto S, Murayama S, Kondo H, Nishimura N. 2002. Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agr Forest Meteorol, 112: 203–215.

    Article  Google Scholar 

  • Shi F, Chen X, Wang W, Zu Y. 2001. Introduction to the larch-dominant site for CO2 flux in a forest of the Laoshan Experimental Station in Northeast China. In: Proceedings of International Workshop for Advanced Flux Network and Flux Evaluation: 87–91. ASAHI Printing Co. Ltd. Sapporo, Japan.

    Google Scholar 

  • Shvidenko A, Nilsson S 1994. What do we know about the Siberian forests? Ambio, 23: 396–404.

    Google Scholar 

  • Tans PP, Fung IY, Takahashi T. 1990. Observational constraints on the global atmospheric CO2 budget. Science, 247: 1431–1438.

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Saigusa N, Yamamoto S, Kondo H, Zu Y, Yang F, Wang W, Hirano T, Toriyama A, Fu**uma Y. 2003. Seasonal variation of net ecosystem CO2 exchange over larch forest in northeast China and northern Japan. In: Proceedings of International Workshop on Flux Observation and Research in Asia: Bei**g: Chinese Ecosystem Research Network, 72–73.

    Google Scholar 

  • Wang H, Saigusa N, Yamamoto S, Kondo H, Hirano T, Toriyama A, Fu**uma Y. 2004. Net ecosystem CO2 exchange over a larch forest in Hokkaido, Japan. Atmos Environ, 38: 7021–7032.

    Article  CAS  Google Scholar 

  • Wang H, Saigusa N, Zu Y, Yamamoto S, Kondo H, Yang F, Wang W, Hirano T, Fu**uma Y. 2005b. Response of CO2 flux to environmental variables in two larch forest ecosystems in East Asia. Phyton-Ann REI Bot, 45: 339–346.

    CAS  Google Scholar 

  • Wang H, Zu Y, Saigusa N, Yamamoto S, Kondo H, Yang F, Wang W. 2005a. CO2, water vapor and energy fluxes in a larch forest in northeast China. J Agr Meteorol, 60: 549–552.

    Google Scholar 

  • Webb EK, Pearman GI, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water vapor transfer. Q J R Meteorol Soc, 106: 85–100.

    Article  Google Scholar 

  • Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S. 2002. Energy balance closure at FLUXNET sites. Agr Forest Meteorol, 113: 223–243.

    Article  Google Scholar 

  • Wofsy SC, Goulden ML, Mounger JW, Fan SM, Bakwin PS, Daube BC, Bassow SL, Bazzas FA. 1993. Net exchange of CO2 in a mid-latitude forest. Science, 260: 1314–1317.

    Article  PubMed  Google Scholar 

  • Yamamoto S, Murayama S, Saigusa N, Kondo H. 1999. Seasonal and inter-annual variation of CO2 flux between a temperate forest and atmosphere in Japan. Tellus ser B, 51: 402–413.

    Article  Google Scholar 

  • Zimov SA, Semiletov IP, Daviodov SP, Voropaev VY, Prosyannikov SF, Wong CS, Chan YH. 1993. Wintertime CO2 emission from soils of northeastern Siberia. Arctic, 46: 197–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-min Wang.

Additional information

Foundation project: This research was supported by the Global Environment Research Fund, Ministry of the Environment, Japan (S-1: Integrated Study for Terrestrial Carbon Management of Asia in the 21st Century Based on Scientific Advancements), the Chinese Academy of Sciences (07W70000SZ), the National Natural Science Foundation of China (30300271) and the State Key Basic Research and Development Plan of China (2004CCA02700).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Hm., Saigusa, N., Zu, Yg. et al. Carbon fluxes and their response to environmental variables in a Dahurian larch forest ecosystem in northeast China. Journal of Forestry Research 19, 1–10 (2008). https://doi.org/10.1007/s11676-008-0001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-008-0001-z

Keywords

Navigation