Log in

Thermodynamic reassessment of the Cu-O phase diagram

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Parts of the copper-oxygen equilibrium phase diagram were reassessed using the calculation of phase diagram technique (CALPHAD). The model parameters were optimized to yield the best fit between calculated and experimentally determined phase equilibria at elevated oxygen pressures up to 11 MPa. The Cu-O liquid phase is represented by the two-sublattice model for ionic liquids containing copper on the cation sublattice with formal valences of Cu+1, Cu+2, and Cu+3. The presence of Cu+3 ions in the liquid phase, corresponding to a formation of Cu2O3 species, was the key assumption of this model. Congruent melting of CuO at 1551 K under an oxygen pressure of ∼126.8 MPa is predicted, which is considerably below previous theoretical values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Cava, B. Batlogg, R.B. Vandover, J.J. Krajewski, J.V. Waszcak, R.M. Fleming, W.F. Peck, L.W. Rupp, P. Marsh, A.C.W.P. James, and L.F. Schneemeyer, Superconductivity at 60-K in LA2-XSRXCACU2O6—The Simplest Double-Layer Cuprate, Nature, 1990, Vol 345 (No. 6276), p 602–604

    Article  ADS  Google Scholar 

  2. E. Dagotto and T.M. Rice, Surprises on the Way from One- to Two-Dimensional Quantum Magnets: The Ladder Materials, Science, 1996, Vol 271 (No. 5249), p 618–623

    Article  ADS  Google Scholar 

  3. B. Hallstedt, D. Risold, and L.J. Gauckler, Thermodynamic Assessment of the Copper-Oxigen System, J. Phase Equilibria, Vol 15, 1994, p 483–499

    Google Scholar 

  4. H.S. Roberts and F.H. Smyth, The System Copper: Cupric Oxide: Oxygen, J. Am. Chem. Soc., Vol 43, 1921, p 1061–1079

    Article  Google Scholar 

  5. A.V. Kosenko and G.A. Emel’chenko, Equilibrium Phase Relationships in the System Cu-O under High Oxygen Pressure, J. Phase Equilibria, Vol 22, 2001, p 12–19

    Article  Google Scholar 

  6. R. Schmid, A Thermodynamic Analysis of the Cu-O System with an Associated Solution Model, Metall. Trans. B, Vol 14, 1983, p 473–481

    Google Scholar 

  7. A. Boudéne, K. Hack, A. Mohammad, D. Neuschütz, and E. Zimmermann, Experimental Investigating and Thermochemical Assessment of the System Cu-O, Z. Metallkd, Vol 83, 1992, p 663–668

    Google Scholar 

  8. V.A. Lysenko, Neorganitcheskie Materialy, Vol 34, 1998, p 1108–1114 (in Russian)

    Google Scholar 

  9. B. Hallstedt and L.J. Gauckler, Revision of the Thermodynamic Descriptions of the Cu-O, Ag-O, Ag-Cu-O, Bi-Sr-O, Bi-Ca-O, Bi-Cu-O, Sr-Cu-O, Ca-Cu-O and Sr-Ca-Cu-O Systems, Computer Coupling of Phase Diagrams and Thermochemistry, Vol 27, 2003, p 177–191

    Google Scholar 

  10. M.T. Calavaguera-Mora, J.T. Touron, J. Rodriquez-Viejo, and N. Clavaguera, Thermodynamic Description of the Cu-O System. J. Alloys Compd., Vol 377, 2004, p 8–16

    Article  Google Scholar 

  11. Termicheskie Konstanty Veshchestv, Part I: O, H, Halogenes, Inert Gases, 1965; Part II: Chalcogenides, 1966; Part III: N, P, As, Sb, Bi, 1969; Part IV: C, Si, Ge, Sn, Pb, 1970; Part V: B, Al, Ga, Ir, Tl, 1971; Part VI: Zn, Cd, Hg, Cu, Ag, Au, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, 1972; Part VIII: SC, Y, Lanthanides, Actinides, 1978; Part X: Alkaline Metals, 1981; P. Glushko and V.A. Medvedev, Ed., Akademyia Nauk, Moscow, U.S.S.R.

  12. D.R. Stuell et al., JANAF, Thermochemical Tables, M.W. Chase, et al., Ed., U.S. Dept. of Commerce/Natl. Bur. Stand., US Governmt. Printing Office, 1971, J. Phys. Chem. Ref. Data, 1985, Vol 14, p 1

  13. M. O’Keeffe and J-O. Brown, The Crystal Structure of Paramelanokite, Cu4O3, Am. Mineral., Vol 63, 1978, p 180

    Google Scholar 

  14. Gmelin’s Handbuch der Anorganischen Chemie, Kupfer-Teil, B-Lieferung 1, (Gremlin’s Handbook of Anorganic Chemistry) Verlag Chemie, Weinheim, Germany, 1958, p 133–138 (in German)

  15. R. Scholder and U. Voelskow, Über Cuprate (III), (About Cuprates [III]) Z. Anorg. Allg. Chem., Vol 256, 1951, p 266 (in German)

    Google Scholar 

  16. G. Krabbes, W. Bieger, U. Wiesner, and A. Teresiak: Isothermal Sections and primary Crystallization in the Quasiternary YO1.5-BaO-CuOx System at p(O2)=0.21 105 Pa, J. Solid State Chem., 1993, 103, p 420–432

    Article  ADS  Google Scholar 

  17. U. Ammerahl, G. Dhalenne, A. Revcolevschi, J. Berthon, and H. Moudden: Crystal growth and Characterization of the Spin-Ladder Compound (Sr,Ca)14Cu24O41, J. Cryst. Growth, 1998, 193, p 55–60

    Article  ADS  Google Scholar 

  18. G. Behr, W. Löser, M-O. Apostu, W. Gruner, M. Hücker, L. Schramm, D. Souptel, and J. Werner: Floating Zone Growth of CuO Under Elevated Oxygen Pressure and its Relevance for the Crystal Growth of Cuprates, J. Cryst. Growth, Vol 40 (No.1/2), 2005, p 21–25

    Google Scholar 

  19. J.B. Goodenough and A. Manthiram, Crystal Chemistry and Superconductivity in the Copper Oxides, Chemistry of High Temperature Superconductors, C.N.R. Rao, Ed., World Scientific Publishing Co., 1991, p 1–56

  20. D.D. Sarma, Investigation of the Electronic Structure of the Cuprate Superconductors Using High-Energy Spectroscopies, Chemistry of High Temperature Superconductors, C.N.R. Rao, Ed., World Scientific Publishing Co. Pte. Ltd., 1991, p 348–378

  21. D.D. Sarma, O. Strebel, C.T. Simmons, U. Neukirch, and G. Kaindl, Electronic Structure of High-T c Superconductors from Soft-X-ray Absorption, Phys. Rev. B, Vol 37, No. 16, 1988, p 9784–9787

    Article  ADS  Google Scholar 

  22. CRC Handbook of Chemistry and Physics, D.R. Lide, Ed., CRC Press, 1994, p 6–49

  23. A. Dinsdale, SGTE Data for Pure Elements, CALPHAD, Vol 15, 1991, p 317–425

    Article  Google Scholar 

  24. R.H. Lamoreaux and D.L. Hildenbrand, High-Temperature Vaporization Behaviour of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg, J. Phys. Chem. Ref. Data, Vol 16, 1987, p 419–443

    Article  ADS  Google Scholar 

  25. O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances 1, Springer-Verlag, 1991, p 603

  26. B. Sundman, Modification of the Two-Sublattice Model for Liquids, CALPHAD, Vol 15, No. 2, 1991, p 109–119

    Article  Google Scholar 

  27. N. Saunders and A.P. Miodownik, CALPHAD, Calculation of Phase Diagrams, A Comprehensive Guide, Pergamon Materials Series Vol. 1, Elsevier Science Ltd, 1998, p 92

  28. J. Xue and R. Dieckmann, The Non-Stoichiometry and the Point Defect Structure of Cuprous Oxide (Cu2−δO), J. Phys. Chem. Solids, Vol 51, 1990, p 1263–1275

    Article  ADS  Google Scholar 

  29. J. Xue and R. Dieckmann, The High-Temperature Phase Diagram of the Cu-O System in Stability Region of Cuprous Oxide (Cu2−δO), High Temp. High Press., Vol 24, 1992, p 271–284

    Google Scholar 

  30. M.M. O’Keeffe and F.S. Stone, The Magnetic Susceptibility of Cupric Oxide, J. Phys. Chem. Solids, Vol 23, 1962, p 261–266

    Article  Google Scholar 

  31. M.S. Seehra, Z. Feng, and R. Gopalakrishnan, Magnetic Phase Transitions in Cupric Oxide, J. Phys. C. Solid State Phys., Vol 21, 1988, p L1051-L1054

    Article  ADS  Google Scholar 

  32. B. Jansson, Trita-Mac-0234, Royal Institute of Technology, Stockholm, Sweden, 1984

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schramm, L., Behr, G., Löser, W. et al. Thermodynamic reassessment of the Cu-O phase diagram. J Phs Eqil and Diff 26, 605–612 (2005). https://doi.org/10.1007/s11669-005-0005-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-005-0005-8

Keywords

Navigation