Log in

Thermal Conductivity in Suspension Sprayed Thermal Barrier Coatings: Modeling and Experiments

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Axial suspension plasma spraying (ASPS) can generate microstructures with higher porosity and pores in the size range from submicron to nanometer. ASPS thermal barrier coatings (TBC) have already shown a great potential to produce low thermal conductivity coatings for gas turbine applications. It is important to understand the fundamental relationships between microstructural defects in ASPS coatings such as crystallite boundaries, porosity etc. and thermal conductivity. Object-oriented finite element (OOF) analysis has been shown as an effective tool for evaluating thermal conductivity of conventional TBCs as this method is capable of incorporating the inherent microstructure in the model. The objective of this work was to analyze the thermal conductivity of ASPS TBCs using experimental techniques and also to evaluate a procedure where OOF can be used to predict and analyze the thermal conductivity for these coatings. Verification of the model was done by comparing modeling results with the experimental thermal conductivity. The results showed that the varied scaled porosity has a significant influence on the thermal conductivity. Smaller crystallites and higher overall porosity content resulted in lower thermal conductivity. It was shown that OOF could be a powerful tool to predict and rank thermal conductivity of ASPS TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42

    Article  Google Scholar 

  2. N. Curry, Z. Tang, N. Markocsan, and P. Nylén, Influence of Bond Coat Surface Roughness on the Structure of Axial Suspension Plasma Spray Thermal Barrier Coatings—Thermal and Lifetime Performance, Surf. Coat. Technol., 2015, 268, p 15-23

    Article  Google Scholar 

  3. K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828

    Article  Google Scholar 

  4. U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J.-M. Dorvaux, M. Poulain, R. Mévrel, and M. Caliez, Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerosp. Sci. Technol., 2003, 7(1), p 73-80

    Article  Google Scholar 

  5. A. Ganvir, N. Curry, N. Markocsan, P. Nylén, and F.-L. Toma, Comparative Study of Suspension Plasma Sprayed and Suspension High Velocity Oxy-Fuel Sprayed YSZ Thermal Barrier Coatings, Surf. Coat. Technol., 2015, 268, p 70-76

    Article  Google Scholar 

  6. A. Ganvir, N. Curry, S. Govindarajan, and N. Markocsan, Characterization of Thermal Barrier Coatings Produced by Various Thermal Spray Techniques Using Solid Powder, Suspension, and Solution Precursor Feedstock Material, Int. J. Appl. Ceram. Technol., 2015, p n/a-n/a

  7. H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stover, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123

    Article  Google Scholar 

  8. T.R. Kakuda, A.M. Limarga, T.D. Bennett, and D.R. Clarke, Evolution of Thermal Properties of EB-PVD 7YSZ Thermal Barrier Coatings with Thermal Cycling, Acta Mater., 2009, 57(8), p 2583-2591

    Article  Google Scholar 

  9. J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby, Methods to Reduce the Thermal Conductivity of EB-PVD TBCs, Surf. Coat. Technol., 2002, 151-152, p 383-391

    Article  Google Scholar 

  10. K. Matsumoto, Y. Itoh, and T. Kameda, EB-PVD Process and Thermal Properties of Hafnia-Based Thermal Barrier Coating, Sci. Technol. Adv. Mater., 2003, 4(2), p 153

    Article  Google Scholar 

  11. A.F. Renteria, B. Saruhan, U. Schulz, H.-J. Raetzer-Scheibe, J. Haug, and A. Wiedenmann, Effect of Morphology on Thermal Conductivity of EB-PVD PYSZ TBCs, Surf. Coat. Technol., 2006, 201(6), p 2611-2620

    Article  Google Scholar 

  12. A. Ganvir, N. Curry, N. Markocsan, P. Nylen, M. Vilemova, and Z. Pala, Influence of Microstructure on Thermal Properties of Columnar Axial Suspension Plasma Sprayed Thermal Barrier Coatings. In Thermal Spray 2015: Proceedings from the International Thermal Spray Conference (May 11-14, 2015, Long Beach, California, USA), Long Beach, California, 2015, p 498-505

  13. A. Ganvir, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS), J. Therm. Spray Technol., 2015, p 1-10.

  14. A. Ganvir, N. Curry, N. Markocsan, P. Nylén, S. Joshi, M. Vilemova, and Z. Pala, Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings, J. Therm. Spray Technol., 2015, 25(1-2), p 202-212

    Google Scholar 

  15. I.O. Golosnoy, S.A. Tsipas, and T.W. Clyne, An Analytical Model for Simulation of Heat Flow in Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2005, 14(2), p 205-214

    Article  Google Scholar 

  16. I.O. Golosnoy, A. Cipitria, and T.W. Clyne, Heat Transfer Through Plasma-Sprayed Thermal Barrier Coatings in Gas Turbines: A Review of Recent Work, J. Therm. Spray Technol., 2009, 18(5-6), p 809-821

    Article  Google Scholar 

  17. R. Taylor, Thermal Conductivity Determinations of Thermal Barrier Coatings, Mater. Sci. Eng., A, 1998, 245(2), p 160-167

    Article  Google Scholar 

  18. ImageJ Software, Image Processing and Analysis in Java. http://imagej.nih.gov/ij/. Accessed 17 Nov 2014.

  19. S.A. Langer, E.R.F. Jr., and W.C. Carter, OOF: Image-Based Finite-Element Analysis of Material Microstructures, Comput. Sci. Eng., 2001, 3(3), p 15-23

    Article  Google Scholar 

  20. P. Michlik and C. Berndt, Image-Based Extended Finite Element Modeling of Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 201(6), p 2369-2380

    Article  Google Scholar 

  21. A.C.E. Reid, S.A. Langer, R.C. Lua, V.R. Coffman, S.-I. Haan, and R.E. García, Image-Based Finite Element Mesh Construction for Material Microstructures, Comput. Mater. Sci., 2008, 43(4), p 989-999

    Article  Google Scholar 

  22. J.P. Angle, Z. Wang, C. Dames, and M.L. Mecartney, Comparison of Two-Phase Thermal Conductivity Models with Experiments on Dilute Ceramic Composites, J. Am. Ceram. Soc., 2013, 96(9), p 2935-2942

    Article  Google Scholar 

  23. M. Gupta and P. Nylén, Design of Low Thermal Conductivity Thermal Barrier Coatings by Finite Element Modelling, presented at the SMT24, Dresden, September 7-9, 2010, 2011, p 353-365.

  24. M. Gupta and P. Nylén, Structure-property Relationships in Thermal Barrier Coatings by Finite Element Modelling, presented at the Twenty Fifth International Conference on Surface Modification Technologies, 2012, p 175-184.

  25. A.D. Jadhav, N.P. Padture, E.H. Jordan, M. Gell, P. Miranzo, and E.R. Fuller, Jr., Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures, Acta Mater., 2006, 54(12), p 3343-3349

    Article  Google Scholar 

  26. Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, and H. Herman, Effects of Pores and Interfaces on Effective Properties of Plasma Sprayed Zirconia Coatings, Acta Mater., 2003, 51(18), p 5319-5334

    Article  Google Scholar 

  27. M. Gupta, P. Nylén, and J. Wigren, A Modelling Approach to Designing Microstructures in Thermal Barrier Coatings, J. Ceram. Sci. Technol., 2013, 4(2), p 85-92

    Google Scholar 

  28. M. Gupta, N. Curry, P. Nylén, N. Markocsan, and R. Vaßen, Design of Next Generation Thermal Barrier Coatings—Experiments and Modelling, Surf. Coat. Technol., 2013, 220, p 20-26

    Article  Google Scholar 

  29. OOF: Finite Element Analysis of Microstructures. OOF: Finite Element Analysis of Microstructures: http://www.ctcms.nist.gov/oof/oof2/. Accessed: 17 Nov 2014.

  30. J.H. Qiao, R. Bolot, H.L. Liao, and C. Coddet, Knudsen Effect on the Estimation of the Effective Thermal Conductivity of Thermal Barrier Coatings, J. Therm. Spray Technol., 2013, 22(2-3), p 175-182

    Article  Google Scholar 

  31. R. A. Miller, J. L. Smialek, and R. G. Garlick, Phase Stability in Plasma-Sprayed, Partially Stabilized Zirconia-Yttria. In Science and Technology of Zirconia, Advances in Ceramics, vol. 3, Westerville, OH: The American Ceramic Society, 1981, p 241-253

  32. H. Kassner, A. Stuke, M. Rodig, R. Vassen, and D. Stover, “Influence of Porosity on Thermal Conductivity and Sintering in Suspension Plasma Sprayed Thermal Barrier Coatings, Adv. Ceram. Coat. Interfaces III, Ceram. Eng. Sci. Proc., 2009, 46, p 147

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Nicholas Curry and Stefan Björklund at University West, Sweden for spraying the coatings. Authors would also like to thank Zdenek Pala, Institute of Plasma Physics, Czech Republic for performing the XRD analysis on these coatings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Gupta.

Additional information

Ashish Ganvir and Chamara Kumara have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganvir, A., Kumara, C., Gupta, M. et al. Thermal Conductivity in Suspension Sprayed Thermal Barrier Coatings: Modeling and Experiments. J Therm Spray Tech 26, 71–82 (2017). https://doi.org/10.1007/s11666-016-0503-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0503-8

Keywords

Navigation