Log in

RETRACTED ARTICLE: Minimization of Surface Roughness and Residual Stress in Grinding Operations of Inconel 718

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

This article was retracted on 10 July 2024

This article has been updated

Abstract

The residual stress and surface roughness enhancement of ground surfaces can decrease the lifetime of workpiece by reducing its fatigue life. It is critical to accurately predict and minimize the residual stress and surface toughness of ground surfaces in order to enhance efficiency of part production using grinding operations. A virtual machining system is developed in the research work to minimize the surface integrity and residual stress during grinding operations of Inconel 718. The cutting temperature during grinding operations is calculated using the Inconel alloy Johnson–Cook law models. Then, using the finite element method, residual stress during the grinding operation is estimated. Utilizing the established virtual machining method, the surface roughness is predicted in the study. Using the Taguchi optimization approach, the grinding parameters of depth of cut and feed velocity are optimized in order to reduce surface roughness as well as residual stress throughout grinding operations on Inconel 718 superalloy. To confirm the effectiveness of the developed technique in the study, simulation and experimentation are conducted. As a result, the quality as well as reliability of the ground surfaces can be enhanced by using the developed virtual machining system in the study to minimize the surface roughness and residual stress of produced parts using grinding operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. R. Spina and B. Cavalcante, Evaluation of Grinding of Unfilled and Glass Fiber Reinforced Polyamide 6, 6, Polymers, 2020, 12(10), p 2288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Z. Chen, L. Qian, R. Cui, J. Liu, and Q. Zhang, Machining-Induced Residual Stress Analysis and Multi-objective Optimization for Milling Process of Mg-Li Alloy, Measurement, 2022, 204, p 112127.

    Article  Google Scholar 

  3. C. Shan, M. Zhang, S. Zhang, and J. Dang, Prediction of Machining-Induced Residual Stress in Orthogonal Cutting of Ti6Al4V, Int. J. Adv. Manuf. Technol., 2020, 107(5), p 2375–2385.

    Article  Google Scholar 

  4. M. Kumar, H.N. Singh Yadav, A. Kumar, and M. Das, An Overview of Magnetorheological Polishing Fluid Applied in Nano-finishing of Components, J. Micromanuf.., 2021, 5, p 25165984211008172.

    Google Scholar 

  5. A. Aggarwal and A.K. Singh, Development of Grinding Wheel Type Magnetorheological Finishing Process for Blind Hole Surfaces, Mater. Manuf. Processes, 2021, 36(4), p 457–478.

    Article  CAS  Google Scholar 

  6. D. Curtis, H. Krain, A. Winder, and D. Novovic, Impact of Grinding Wheel Specification on Surface Integrity and Residual Stress When Grinding Inconel 718, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2021, 235(10), p 1668–1681.

    Article  CAS  Google Scholar 

  7. F. Lavecchia, G. Percoco, E. Pei, and L.M. Galantucci, Computer Numerical Controlled Grinding and Physical Vapor Deposition for Fused Deposition Modelled Workpieces, Adv. Mater. Sci. Eng., 2018, 2018, p 1–7.

    Article  Google Scholar 

  8. S. Malkin, Grinding Technology: Theory and Applications of Machining with Abrasives, Ellis Horwood Limited, Chichester, 1989.

    Google Scholar 

  9. S.K. Khare and S. Agarwal, Predictive Modeling of Surface Roughness in Grinding, Procedia CIRP, 2015, 31, p 375–380.

    Article  Google Scholar 

  10. Z. Ding, G. Sun, M. Guo, X. Jiang, B. Li, and S.Y. Liang, Effect of Phase Transition on Micro-grinding-induced Residual Stress, J. Mater. Process. Technol., 2020, 281, p 116647.

    Article  CAS  Google Scholar 

  11. G. **ao, B. Chen, S. Li, and X. Zhuo, Fatigue Life Analysis of Aero-Engine Blades for Abrasive Belt Grinding Considering Residual Stress, Eng. Fail. Anal., 2022, 131, p 105846.

    Article  Google Scholar 

  12. S. Shen, B. Li, and W. Guo, Experimental Study on Grinding-Induced Residual Stress in C-250 Maraging Steel, Int. J. Adv. Manuf. Technol., 2020, 106(3), p 953–967.

    Article  Google Scholar 

  13. Y. Wang, X. Chu, Y. Huang, G. Su, and D. Liu, Surface Residual Stress Distribution for Face Gear under Grinding with a Long-Radius Disk Wheel, Int. J. Mech. Sci., 2019, 159, p 260–266.

    Article  Google Scholar 

  14. Y. He, G. **ao, W. Li, and Y. Huang, Residual Stress of a TC17 Titanium Alloy after Belt Grinding and Its Impact on the Fatigue Life, Materials, 2018, 11(11), p 2218.

    Article  PubMed  PubMed Central  Google Scholar 

  15. J. Chen, Q. Fang, and L. Zhang, Investigate on Distribution and Scatter of Surface Residual Stress in Ultra-High Speed Grinding, Int. J. Adv. Manuf. Technol., 2014, 75(1), p 615–627.

    Article  Google Scholar 

  16. W. Pei-Zhuo, H. Zhan-Shu, Z. Yuan-xi, and Z. Shu-Sen, Control of Grinding Surface Residual Stress of Inconel 718, Procedia Eng., 2017, 174, p 504–511.

    Article  Google Scholar 

  17. H. Singh, V.S. Sharma, and M. Dogra, Exploration of Graphene Assisted Vegetables Oil Based Minimum Quantity Lubrication for Surface Grinding of TI-6AL-4V-ELI, Tribol. Int., 2020, 144, p 106113.

    Article  CAS  Google Scholar 

  18. H. Singh, V.S. Sharma, S. Singh, and M. Dogra, Nanofluids Assisted Environmental Friendly Lubricating Strategies for the Surface Grinding of Titanium Alloy: Ti6Al4V-ELI, J. Manuf. Process., 2019, 39, p 241–249.

    Article  Google Scholar 

  19. L. Ma, Y. Gong, and X. Chen, Study on Surface Roughness Model and Surface Forming Mechanism of Ceramics in Quick Point Grinding, Int. J. Mach. Tools Manuf., 2014, 77, p 82–92.

    Article  Google Scholar 

  20. F. Kara, U. Köklü, and U. Kabasakaloğlu, Taguchi Optimization of Surface Roughness in Grinding of Cryogenically Treated AISI 5140 Steel, Mater. Test., 2020, 62(10), p 1041–1047.

    Article  CAS  Google Scholar 

  21. Y. Liu, S. Song, Y. Zhang, W. Li, and G. **ao, Prediction of Surface Roughness of Abrasive Belt Grinding of Superalloy Material Based on RLSOM-RBF, Materials, 2021, 14(19), p 5701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. You, J. Tang, W. Zhou, W. Zhou, J. Zhao, and H. Chen, Research on Calculation of Contact Fatigue Life of Rough Tooth Surface Considering Residual Stress, Eng. Fail. Anal., 2022, 140, p 106459.

    Article  Google Scholar 

  23. S. Agarwal and P.V. Rao, Modeling and Prediction of Surface Roughness in Ceramic Grinding, Int. J. Mach. Tools Manuf., 2010, 50(12), p 1065–1076.

    Article  Google Scholar 

  24. X. Lei, D. **ang, P. Peng, X. Niu, B. Zhao, and G. Gao, Study on Surface Residual Stress of Hardened 12Cr2Ni4A Alloy Steel by Ultrasonic Vibration-Assisted ELID Grinding, Int. J. Adv. Manuf. Technol., 2022, 118(1), p 641–649.

    Article  Google Scholar 

  25. N. Kumar Maroju and X. **, Effects of Vibration Assistance on Surface Residual Stress in Grinding of Ti6Al4V Alloy, Procedia Manuf., 2017, 10, p 171–82.

    Article  Google Scholar 

  26. D. Nguyen, S. Yin, Q. Tang, and P.X. Son, Online Monitoring of Surface Roughness and Grinding Wheel Wear When Grinding Ti-6Al-4V Titanium Alloy using ANFIS-GPR Hybrid Algorithm and Taguchi Analysis, Precis. Eng., 2019, 55, p 275–292.

    Article  Google Scholar 

  27. X. Ming, Q. Gao, H. Yan, J. Liu, and C. Liao, Mathematical Modeling and Machining Parameter Optimization for the Surface Roughness of Face Gear Grinding, Int. J. Adv. Manuf. Technol., 2017, 90(9), p 2453–2460.

    Article  Google Scholar 

  28. Y. Li, Y. Liu, Y. Tian, Y. Wang, and J. Wang, Application of Improved Fireworks Algorithm in Grinding Surface Roughness Online Monitoring, J. Manuf. Process., 2022, 74, p 400–412.

    Article  Google Scholar 

  29. M. Soori, B. Arezoo, and M. Habibi, Accuracy Analysis of Tool Deflection Error Modelling in Prediction of Milled Surfaces by a Virtual Machining System, Int. J. Comput. Appl. Technol., 2017, 55(4), p 308–321.

    Article  Google Scholar 

  30. M. Soori, B. Arezoo, and M. Habibi, Virtual Machining Considering Dimensional, Geometrical and Tool Deflection Errors in Three-Axis CNC Milling Machines, J. Manuf. Syst., 2014, 33(4), p 498–507.

    Article  Google Scholar 

  31. M. Soori, B. Arezoo, and M. Habibi, Dimensional and Geometrical Errors of Three-Axis CNC Milling Machines in a Virtual Machining System, Comput. Aided Des., 2013, 45(11), p 1306–1313.

    Article  Google Scholar 

  32. M. Soori, B. Arezoo, and M. Habibi, Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System, J. Manuf. Sci. Eng., 2016 https://doi.org/10.1115/1.4032393

    Article  Google Scholar 

  33. M. Soori and M. Asmael, Virtual Minimization of Residual Stress and Deflection Error in Five-Axis Milling of Turbine Blades, Stroj. Vestn. J. Mech. Eng., 2021, 67(5), p 235–244.

    Article  Google Scholar 

  34. M. Soori and M. Asmael, Cutting Temperatures in Milling Operations of Difficult-to-Cut Materials, J. New Technol. Mater., 2021, 11(1), p 47–56.

    Google Scholar 

  35. M. Soori and B. Arezoo, A Review in Machining-Induced Residual Stress, J. New Technol. Mater., 2022, 12(1), p 64–83.

    Google Scholar 

  36. M. Soori, M. Asmael, A. Khan, and N. Farouk, Minimization of Surface Roughness in 5-axis Milling of Turbine Blades, Mech. Based Des. Struct. Mach., 2021 https://doi.org/10.1080/15397734.2021.1992779

    Article  Google Scholar 

  37. M. Soori and M. Asamel, Mechanical Behavior of Materials in Metal Cutting Operations, A Review, J. New Technol. Mater., 2020, 10(2), p 79.

    Article  CAS  Google Scholar 

  38. M. Soori, M. Asamel, and D. Solyali, Recent Development in Friction Stir Welding Process: A Review, SAE Int. J. Mater. Manuf., 2020, 14(1), p 18.

    Article  Google Scholar 

  39. M. Soori and M. Asmael, Classification of Research and Applications of the Computer Aided Process Planning in Manufacturing Systems, Indep. J. Manag. Prod., 2021, 12(5), p 1250–1281.

    Article  Google Scholar 

  40. M. Soori and M. Asmael, A Review of the Recent Development in Machining Parameter Optimization, Jordan J. Mech. Ind. Eng., 2022, 16(2), p 205–223.

    Google Scholar 

  41. M. Soori and B. Arezoo, Virtual Machining Systems for CNC Milling and Turning Machine Tools: A Review, Int. J. Eng. Future Technol., 2020, 18(1), p 56–104.

    Google Scholar 

  42. M. Soori and M. Asmael, Minimization of Deflection Error in Five Axis Milling of Impeller Blades, Facta Univ. Ser. Mech. Eng., 2021 https://doi.org/10.22190/FUME210822069S

    Article  Google Scholar 

  43. R. Dastres, M. Soori, and M. Asmael, Radio Frequency Identification (RFID) Based Wireless Manufacturing Systems, A Review, Indep. J. Manag. Prod., 2022, 13(1), p 258–290.

    Article  Google Scholar 

  44. X. Chen, W. Rowe, and D. McCormack, Analysis of the Transitional Temperature for Tensile Residual Stress in Grinding, J. Mater. Process. Technol., 2000, 107(1–3), p 216–221.

    Article  Google Scholar 

  45. M. Balart, A. Bouzina, L. Edwards, and M. Fitzpatrick, The Onset of Tensile Residual Stresses in Grinding of Hardened Steels, Mater. Sci. Eng., A, 2004, 367(1–2), p 132–142.

    Article  Google Scholar 

  46. J.C. Jaeger, Moving Sources of Heat and the Temperature of Sliding Contacts, Proc. R. Soc. N. S. W., 1942, 76, p 203–224.

    Google Scholar 

  47. O. Fergani, Y. Shao, I. Lazoglu, and S.Y. Liang, Temperature Effects on Grinding Residual Stress, Procedia CIRP, 2014, 14, p 2–6.

    Article  Google Scholar 

  48. S. Timoshenko and J. Goodier, Theory of Elasticity, International Student Edition, Kogakusha Co Ltd., 1970, p 444

    Google Scholar 

  49. D. Ulutan, B.E. Alaca, and I. Lazoglu, Analytical Modelling of Residual Stresses in Machining, J. Mater. Process. Technol., 2007, 183(1), p 77–87.

    Article  CAS  Google Scholar 

  50. C. Ji, Y. Li, X. Qin, Q. Zhao, D. Sun, and Y. **, 3D FEM Simulation of Helical Milling Hole Process for Titanium Alloy Ti-6Al-4V, Int. J. Adv. Manuf. Technol., 2015, 81(9), p 1733–1742.

    Article  Google Scholar 

  51. A. He, G. **e, H. Zhang, and X. Wang, A Comparative Study on Johnson–Cook, Modified Johnson–Cook and Arrhenius-Type Constitutive Models to Predict the High Temperature Flow Stress in 20CrMo Alloy Steel, Mater. Des. (1980-2015), 2013, 52, p 677–85.

    Article  CAS  Google Scholar 

  52. Y. Lin and X.-M. Chen, A Combined Johnson–Cook and Zerilli–Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49(3), p 628–633.

    Article  CAS  Google Scholar 

  53. X. Wang, C. Huang, B. Zou, H. Liu, H. Zhu, and J. Wang, Dynamic Behavior and a Modified Johnson–Cook Constitutive Model of Inconel 718 at High Strain Rate and Elevated Temperature, Mater. Sci. Eng., A, 2013, 580, p 385–390.

    Article  CAS  Google Scholar 

  54. F. Pashmforoush and R.D. Bagherinia, Influence of Water-Based Copper Nanofluid on Wheel Loading and Surface Roughness During Grinding of Inconel 738 Superalloy, J. Clean. Prod., 2018, 178, p 363–372.

    Article  CAS  Google Scholar 

  55. T.R. Bement, Taguchi Techniques for Quality Engineering, Taylor & Francis, 1989.

    Google Scholar 

  56. W.G. Feather, H. Lim, and M. Knezevic, A Numerical Study into Element Type and Mesh Resolution for Crystal Plasticity Finite Element Modeling of Explicit Grain Structures, Comput. Mech., 2021, 67(1), p 33–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Soori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s11665-024-09804-w"

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soori, M., Arezoo, B. RETRACTED ARTICLE: Minimization of Surface Roughness and Residual Stress in Grinding Operations of Inconel 718. J. of Materi Eng and Perform 32, 8185–8194 (2023). https://doi.org/10.1007/s11665-022-07721-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07721-4

Keywords

Navigation