Log in

Numerical Modeling of Selective Laser Melting: Influence of Process Parameters on the Melt Pool Geometry

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

An efficient approach for virtual prediction of melt pool geometry and temperature distribution in selective laser melting (SLM) is required to optimize the process parameters for eventually printing high-fidelity parts. In this study, the melt pool geometry in the SLM process was simulated by employing Ansys Additive, the commercial finite element analysis software tool. First, a single track of 4 mm length was modeled for Inconel 718 material by varying the process parameters. Validations with existing studies were performed to ensure the reliability of the FE model. Further, a process map exhibiting the optimum process parameters window for SLMed Inconel 718 was developed, which can be used to avoid process-induced defects such as lack of fusion, balling, and keyholing. The response surface methodology design of experiment technique and ANOVA-based regression modeling were used to relate the vital SLM process parameters with the melt pool geometry. The statistical analysis results showed that maximum melt pool depth and width are obtained at maximum laser power and at minimum scan speed and layer thickness. The proposed approach facilitates robust 3D printing by avoiding common process-induced defects as well as allows the tuning of vital process parameters for fabricating superior quality SLM builds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23, p 1917–1928.

    Article  CAS  Google Scholar 

  2. D.G. Ahn, Direct Metal Additive Manufacturing Processes and their Sustainable Applications for Green Technology: A Review, Int. J. Precis. Eng. Manuf. Green. Technol., 2016, 3, p 381–395.

    Article  Google Scholar 

  3. M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaei, S. Daniewicz and J.J. Lewandowski, Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification, JOM, 2017, 69(3), p 439–455.

    Article  Google Scholar 

  4. P. Kumar, J. Farah, J. Akram, C. Teng, J. Ginn and M. Misra, Influence of Laser Processing Parameters on Porosity in INCONEL 718 During Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2019, 103, p 1497–1507.

    Article  Google Scholar 

  5. N. Kladovasilakis, P. Charalampous, I. Kostavelis, D. Tzetzis and D. Tzovaras, Impact of Metal Additive Manufacturing Parameters on the Powder Bed Fusion and Direct Energy Deposition Processes: A Comprehensive Review, Prog. Addit. Manuf., 2021, 6, p 349–365.

    Article  Google Scholar 

  6. M.A. Ryder, C.J. Montgomery, M.J. Brand, J.S. Carpenter, P.E. Jones, A.G. Spangenberger and D.A. Lados, Melt Pool and Heat Treatment Optimization for the Fabrication of High-Strength and High-Toughness Additively Manufactured 4340 Steel, J. Mater. Eng. Perform., 2021, 30, p 5426–5440.

    Article  CAS  Google Scholar 

  7. H. Ali, H. Ghadbeigi and K. Mumtaz, Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V, J. Mater. Eng. Perform., 2018, 27, p 4059–4068.

    Article  CAS  Google Scholar 

  8. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, J.W. Gibbs, D.E. Hahn, C. Kamath and A.M. Rubenchik, Observation of Keyhole-mode Laser Melting in Laser Powder-bed Fusion Additive Manufacturing, J. Mater. Process. Technol., 2014, 214, p 2915–2925.

    Article  Google Scholar 

  9. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A.E. Wilson-Heid, A. De and W. Zhang, Additive Manufacturing of Metallic Components- PROCESS, Structure and Properties, Prog. Mater. Sci., 2018, 92, p 112–224.

    Article  CAS  Google Scholar 

  10. P. Promoppatum and S.C. Yao, Analytical Evaluation of Defect Generation for Selective Laser Melting of Metals, Int. J. Adv. Manuf. Technol., 2019, 103, p 1185–1198.

    Article  Google Scholar 

  11. W.R. Kim, G.B. Bang, J.H. Park, T.W. Lee, B.S. Lee, S.M. Yang, G.H. Kim, K. Lee and H.G. Kim, Microstructural Study on a Fe-10Cu Alloy Fabricated by Selective Laser Melting for Defect-Free Process Optimization Based on the Energy Density, J. Mater. Res. Technol., 2020, 9(6), p 12834–12839.

    Article  CAS  Google Scholar 

  12. S. Gao, X. Yan, C. Chang, E. Aubry, M. Liu, H. Liao and N. Fenineche, Effect of Laser Energy Density on Surface Morphology, Microstructure, and Magnetic Properties of Selective Laser Melted Fe-3wt.% Si Alloys, J. Mater. Eng. Perform., 2021, 30, p 5020–5030.

    Article  CAS  Google Scholar 

  13. J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal and B.E. Stucker, Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting, Prog. Addit. Manuf., 2017, 2, p 157–167.

    Article  Google Scholar 

  14. X. Zhang, B. Mao, L. Mushongera, J. Kundin and Y. Liao, Laser Powder Bed Fusion of Titanium Aluminides: An Investigation on Site-Specific Microstructure Evolution Mechanism, Mater. Des., 2021, 201, 109501.

    Article  CAS  Google Scholar 

  15. T.G. Spears and S.A. Gold, In-process Sensing in Selective Laser Melting (SLM) Additive Manufacturing. Integr, Mater. Manuf. Innov., 2016, 5, p 16–40.

    Article  Google Scholar 

  16. S. Shrestha and K. Chou, Single Track Scanning Experiment in Laser Powder Bed Fusion Process, Proced. Manuf., 2018, 26, p 857–864.

    Google Scholar 

  17. L. Scime and J.L. Beuth, Melt Pool Geometry and Morphology Variability for the Inconel 718 Alloy in a Laser Powder Bed Fusion Additive Manufacturing Process, Addit. Manuf., 2019, 29, 100830.

    CAS  Google Scholar 

  18. S.A. Khairallah and A.T. Anderson, Mesoscopic Simulation Model of Selective Laser Melting of Stainless-Steel Powder, J. Mater. Process. Technol., 2014, 214, p 2627–2636.

    Article  CAS  Google Scholar 

  19. B. Cheng, L. Loeber, H. Willeck, U. Hartel and C. Tuffile, Computational Investigation of Melt Pool Process Dynamics and Pore Formation in Laser Powder Bed Fusion, J. Mater. Eng. Perform., 2019, 28, p 6565–6578.

    Article  CAS  Google Scholar 

  20. M. Khorasani, A.H. Ghasemi, M. Leary, L. Cordova, E. Sharabian, E. Farabi, I. Gibson, M. Brandt and B. Rolfe, A Comprehensive Study on Meltpool Depth in Laser-based Powder Bed Fusion of Inconel 718, Int. J. Adv. Manuf. Technol., 2022, 120, p 2345–2362.

    Article  Google Scholar 

  21. S.A. Khairallah, A.T. Anderson, A.M. Rubenchik and W.E. King, Laser Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones, Acta Mater., 2016, 108, p 36–45.

    Article  CAS  Google Scholar 

  22. N. Diaz Vallejo, C. Lucas, N. Ayers, K. Graydon, H. Hyer and Y. Sohn, Process Optimization and Microstructure Analysis to Understand Laser Powder Bed Fusion of 316L Stainless Steel, Metals, 2021, 11, p 832.

    Article  Google Scholar 

  23. S. Jelvani, R. Shoja Razavi, M. Barekat and M. Dehnavi, Empirical-Statistical Modeling and Prediction of Geometric Characteristics for Laser-Aided Direct Metal Deposition of Inconel 718 Superalloy, Met. Mater. Int., 2019, 26, p 668–681.

    Article  Google Scholar 

  24. M. Balichakra, S. Bontha, P. Krishna and V.K. Balla, Laser Surface Melting of γ-TiAl Alloy: An Experimental and Numerical Modelling Study, Mater. Res. Expr., 2019, 6, 046543.

    Article  Google Scholar 

  25. P. Tan, F. Shen, B. Li and K. Zhou, A Thermo-metallurgical-Mechanical Model for Selective Laser Melting of Ti6Al4V, Mater. Des., 2019, 168, 107642.

    Article  CAS  Google Scholar 

  26. Y.M. Arisoy, L.E. Criales and T.R. Ozel, Modelling and Simulation of Thermal Field and Solidification in Laser Powder Bed Fusion of Nickel Alloy IN625, Opt. Laser Technol., 2019, 109, p 278–292.

    Article  CAS  Google Scholar 

  27. M.J. Ansari, D.S. Nguyen and H.S. Park, Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches, Materials, 2019, 12, p 1272.

    Article  CAS  Google Scholar 

  28. S. Waqar, Q. Sun, J. Liu, K. Guo and J. Sun, Numerical Investigation of Thermal Behavior and Melt Pool Morphology in Multi-track Multi-layer Selective Laser Melting of the 316L Steel, Int. J. Adv. Manuf. Technol., 2021, 112, p 879–895.

    Article  Google Scholar 

  29. M. Majeed, H.M. Khan, G. Wheatley and R. Situ, A Numerical Approach to Assess the Impact of the SLM Laser Parameters on Thermal Variables, J. Addit. Manuf. Technol., 2021, 1(3), p 589–589.

    Google Scholar 

  30. C. Wang, X.P. Tan, S.B. Tor and C.S. Lim, Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives, Addit. Manuf., 2020, 36, 101538.

    Google Scholar 

  31. N. Kouraytem, X. Li, W. Tan, B. Kappes and A.D. Spear, Modeling Process–Structure–Property Relationships in Metal Additive Manufacturing: A Review on Physics-Driven Versus Data-Driven Approaches, J. Phys. Mater., 2021, 4, 032002.

    Article  CAS  Google Scholar 

  32. X. Qi, G. Chen, Y. Li, X. Cheng and C. Li, Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications Challenges and Future Perspectives, Engineering, 2019, 5, p 721–729.

    Article  Google Scholar 

  33. E. Maleki, S. Bagherifard and M. Guagliano, Application of Artificial Intelligence to Optimize the Process Parameters Effects on Tensile Properties of Ti-6Al-4V Fabricated by Laser Powder-Bed Fusion, Int. J. Mech. Mater. Des., 2022, 18, p 199–222.

    Article  CAS  Google Scholar 

  34. H. Tupac-Yupanqui and A. Armani, Additive Manufacturing of Functional Inconel 718 Parts from Recycled Materials, J. Mater. Eng. Perform., 2021, 30, p 1177–1187.

    Article  CAS  Google Scholar 

  35. Y. Li and D. Gu, Parametric Analysis of Thermal Behaviour During Selective Laser Melting Additive Manufacturing of Aluminium Alloy Powder, Mater. Des., 2014, 63, p 856–867.

    Article  CAS  Google Scholar 

  36. J. Yin, H. Zhu, L. Ke, W. Lei, C. Dai and D. Zuo, Simulation of Temperature Distribution in Single Metallic Powder Layer for Laser Micro-Sintering, Comput. Mater. Sci., 2012, 53, p 333–339.

    Article  CAS  Google Scholar 

  37. P. He, C. Sun and Y. Wang, Material Distortion in Laser-Based Additive Manufacturing of Fuel Cell Component: Three-Dimensional Numerical Analysis, Addit. Manuf., 2021, 46, 102188.

    CAS  Google Scholar 

  38. J.P. Choi, G.H. Shin, S. Yang, D.Y. Yang, J.S. Lee, M. Brochu and J.H. Yu, Densification and Microstructural Investigation of Inconel 718 Parts Fabricated by Selective Laser Melting, Powder Technol., 2017, 310, p 60–66.

    Article  CAS  Google Scholar 

  39. W.Y. Chen, X. Zhang, M. Li, R. Xu, C. Zhao and T. Sun, Laser Powder Bed Fusion of INCONEL 718 on 316 Stainless Steel, Addit. Manuf., 2020, 36, 101500.

    CAS  Google Scholar 

  40. T.E. Shelton, G.R. Cobb, C.R. Hartsfield, B.M. Doane, C.C. Eckley and R.A. Kemnitz, The Impact of Laser Control on the Porosity and Microstructure of Selective Laser Melted Nickel Superalloy 718, Results Mater., 2021, 11, 100211.

    Article  CAS  Google Scholar 

  41. O. Gokcekaya, T. Ishimoto, S. Hibino, J. Yasutomi, T. Narushima and T. Nakano, Unique Crystallographic Texture Formation in Inconel 718 by Laser Powder Bed Fusion and Its Effect on Mechanical Anisotropy, Acta Mater., 2021, 212, 116876.

    Article  CAS  Google Scholar 

  42. M. Bayat, S. Mohanty and J.H. Hattel, Multiphysics Modelling of Lack-of-Fusion Voids Formation and Evolution in IN718 Made by Multi-Track/multi-Layer L-PBF, Int. J. Heat Mass. Transf., 2019, 139, p 95–114.

    Article  CAS  Google Scholar 

  43. C. Kusuma, S.H. Ahmed, A. Mian and R. Srinivasan, Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium, J. Mater. Eng. Perform., 2017, 26, p 3560–3568.

    Article  CAS  Google Scholar 

  44. J. Jakumeit, C. Huang, R. Laqua, J. Zielinski and J.H. Schleifenbaum, Effect of Evaporated Gas Flow on Porosity and Microstructure of IN718 Parts Produced by LPBF-Processes, IOP Conf. Ser. Mater. Sci. Eng., 2020, 861, p 012011.

    Article  CAS  Google Scholar 

  45. U. Segurajauregi, A. Alvarez-Vazquez, M. Muniz-Calvente, I. Urresti and H. Naveiras, Fatigue Assessment of Selective Laser Melted Ti-6Al-4V: Influence of Speed Manufacturing and Porosity, Metals, 2021, 11, p 1022.

    Article  CAS  Google Scholar 

  46. P. Kumar, P. Chakravarthy, S.K. Manwatkar and S. Murty, Effect of Scan Speed and Laser Power on the Nature of Defects, Microstructures and Microhardness of 3D-Printed Inconel 718 Alloy, J. Mater. Eng. Perform., 2019, 28, p 6565–6578.

    Google Scholar 

Download references

Acknowledgments

The Ministry of Human Resource Development, Government of India, is sincerely acknowledged by the lead author for providing financial assistance in the form of a research scholarship. This research received no particular funding in any form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukul Shukla.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Shukla, M. Numerical Modeling of Selective Laser Melting: Influence of Process Parameters on the Melt Pool Geometry. J. of Materi Eng and Perform 32, 7998–8013 (2023). https://doi.org/10.1007/s11665-022-07693-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07693-5

Keywords

Navigation