Log in

Effect of Phosphorous Ion Implantation on the Surface, Crystal Structure, Mechanical, and Electrochemical Properties of Bioresorbable Magnesium for Biomedical Applications

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Surface attributes of pure Mg such as biocompatibility, mechanical strength and corrosion are clinically important for artificial implants, but its fast degradation post-implantation has drawbacks. Tuning Mg for clinical needs is achieved by techniques like near surface ion implantation. This work is about improving the surface and corrosion rate of bioresorbable magnesium by phosphorous (P) ion implantation with fluences of 1016-1018 ions/cm2 and ion beam accelerating energy of ~ 700 keV by a Pelletron Linear Accelerator. The in vitro degradation rate was examined using electrochemical potential tests in simulated body fluid (SBF). X-ray diffraction and energy-dispersive x-ray spectroscopy confirmed the implantation of P ions by forming an amorphous P-layer on the Mg surface. Surface hardness and electrochemical resistance improved as confirmed by the mechanical and electrochemical tests in SBF, respectively, post-implantation. Medical implants designed by this modified Mg are compliant with the patient’s healing span post-implantation with decreased corrosion rate agreeing with the healing process, avoiding an implant removal surgery post-patient’s recovery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.J.P.I.B. Hermawan, Updates on the Research and Development of Absorbable Metals for Biomedical Applications, Prog. Biomater., 2018, 7(2), p 93–110.

    Article  CAS  Google Scholar 

  2. Y. Jia et al., Surface Properties of Magnesium Improved by Sr Ion Implantation, Mater. Res. Exp., 2018, 5(6), p 066546.

    Article  Google Scholar 

  3. S. Somasundaram, M. Ionescu, and B.K.J.M. Mathan, Ion Implantation of Calcium and Zinc in Magnesium for Biodegradable Implant Applications, Multidiscip. Digit. Publ. Inst. (MDPI), 2018, 8(1), p 30.

    Google Scholar 

  4. J. Yang et al., A Review on the Exploitation of Biodegradable Magnesium-Based Composites for Medical Applications, Biomed. Mater., 2018, 13(2), p 022001.

    Article  Google Scholar 

  5. R. Xu et al., Eelectrochemical Properties and Corrosion Resistance of Carbon-Ion-Implanted Magnesium, Corros. Sci., 2014, 82, p 173–179.

    Article  CAS  Google Scholar 

  6. N. Kirkland, N. Birbilis, and M.J.A.B. Staiger, Assessing the Corrosion of Biodegradable Magnesium Implants: A Critical Review of Current Methodologies and Their Limitations, Acta Biomater., 2012, 8(3), p 925–936.

    Article  CAS  Google Scholar 

  7. Z. **aobo et al., Microstructure, Mechanical and Corrosion Properties of Mg-(4–x) Nd-xGd-Sr-Zn-Zr Biomagnesium Alloys, Sci. Press, 2014, 50(8), p 979–988.

    Google Scholar 

  8. Z.U. Rahman, L. Pompa, and W.J.J.O.M.S.M.I.M. Haider, Electrochemical Characterization and In-Vitro Bio-Assessment of AZ31B and AZ91E Alloys as Biodegradable Implant Materials, J. Mater. Sci. Mater. Med., 2015, 26(8), p 1–11.

    Article  Google Scholar 

  9. Wilson, J.J.F.B.M., Metallic Biomaterials: State of the Art and New Challenges. Fundam. Biomater. Metals, 2018: 1-33

  10. N. Manam et al., Study of Corrosion in Biocompatible Metals for Implants: A Review, J. Alloy. Compd., 2017, 701, p 698–715.

    Article  CAS  Google Scholar 

  11. M.A. Shafique et al., Effect of Do** Concentration on Absorbance, Structural, and Magnetic Properties of Cobalt-Doped ZnO Nano-Crystallites, Int. Nano Lett., 2012, 2(1), p 1–7.

    Article  Google Scholar 

  12. M. Nastasi et al., Ion-Solid Interactions: Fundamentals and Applications, Cambridge University Press, Cambridge, 1996.

    Book  Google Scholar 

  13. H. Ryssel and I. Ruge, Ion Implantation, John Wiley & Sons, Chichester, 1986.

    Google Scholar 

  14. J. Muñoz-García et al., Self-organized surface nanopatterning by ion beam sputtering, Toward Functional Nanomaterials. Springer, Berlin, 2009, p 323–398

    Chapter  Google Scholar 

  15. M. Castro et al., Self-Organized Ordering of Nanostructures Produced by Ion-Beam Sputtering, Phys. Rev. Lett., 2005, 94(1), p 016102.

    Article  Google Scholar 

  16. S.U. Awan et al., Correlation Between Structural, Electrical, Dielectric and Magnetic Properties of Semiconducting Co Doped and (Co, Li) Co-Doped ZnO Nanoparticles for Spintronics Applications, Physica E, 2018, 103, p 110–121.

    Article  CAS  Google Scholar 

  17. S.U. Awan et al., Room Temperature p-Type Conductivity and Coexistence of Ferroelectric Order in Ferromagnetic Li Doped ZnO Nanoparticles, J. Appl. Phys., 2014, 116(16), p 164109.

    Article  Google Scholar 

  18. N. Ali et al., Assessment of Fatigue and Corrosion Fatigue Behaviours of the Nitrogen Ion Implanted CpTi, Int. J. Fatigue, 2014, 61, p 184–190.

    Article  CAS  Google Scholar 

  19. K. Feng et al., Improved Corrosion Resistance of Stainless Steel 316L by Ti Ion Implantation, Mater. Lett., 2012, 68, p 450–452.

    Article  CAS  Google Scholar 

  20. P. Tian and X.J.R.B. Liu, Surface Modification of Biodegradable Magnesium and its Alloys for Biomedical Applications, Regen. Biomater., 2015, 2(2), p 135–151.

    Article  CAS  Google Scholar 

  21. H. Wang et al., Improvement of In Vitro Corrosion and Cytocompatibility of Biodegradable Fe Surface Modified by Zn Ion Implantation, Appl. Surf. Sci., 2017, 403, p 168–176.

    Article  CAS  Google Scholar 

  22. M. Esmaily et al., Fundamentals and Advances in Magnesium Alloy Corrosion, Prog. Mater Sci., 2017, 89, p 92–193.

    Article  CAS  Google Scholar 

  23. A. Adhilakshmi, K. Ravichandran, and S.N.J.N.J.O.C. Tsn, Protecting electrochemical degradation of pure iron using zinc phosphate coating for biodegradable implant applications, New J. Chem., 2018, 42(22), p 18458–18468.

    Article  CAS  Google Scholar 

  24. X. Wei et al., Improvement on Corrosion Resistance and Biocompability of ZK60 Magnesium Alloy by Carboxyl Ion Implantation, Corros. Sci., 2020, 173, p 108729.

    Article  CAS  Google Scholar 

  25. S. Bagherifard et al., Effects of Nanofeatures Induced by Severe Shot Peening (SSP) on Mechanical, Corrosion and Cytocompatibility Properties of Magnesium Alloy AZ31, Acta Biomater., 2018, 66, p 93–108.

    Article  CAS  Google Scholar 

  26. X.W. Tao et al., Nanomechanical and Corrosion Properties of zk60 Magnesium Alloy Improved by gd Ion Implantation, Surf. Rev. Lett., 2014, 21(06), p 1450085.

    Article  CAS  Google Scholar 

  27. Z. Wang et al., Corrosion Behaviour of Nd Ion Implanted Mg–Gd–Zn–Zr Alloy in Simulated Body Fluid, Adv. Perform. Mater., 2015, 30(6), p 321–326.

    CAS  Google Scholar 

  28. G. Wu et al., Retardation of Surface Corrosion of Biodegradable Magnesium-Based Materials by Aluminum Ion Implantation, Appl. Surf. Sci., 2012, 258(19), p 7651–7657.

    Article  CAS  Google Scholar 

  29. M. Lei et al., Wear and Corrosion Resistance of Al Ion Implanted AZ31 Magnesium Alloy, Surf. Coat. Technol., 2007, 201(9–11), p 5182–5185.

    Article  CAS  Google Scholar 

  30. C. Liu et al., Corrosion Resistance of Titanium Ion Implanted AZ91 Magnesium Alloy, J. Vac. Sci. Technol. A, 2007, 25(2), p 334–339.

    Article  CAS  Google Scholar 

  31. C. Liu et al., Corrosion Behavior of AZ91 Magnesium Alloy Treated by Plasma Immersion Ion Implantation and Deposition in Artificial Physiological Fluids, Thin Solid Films, 2007, 516(2–4), p 422–427.

    Article  CAS  Google Scholar 

  32. G. Wan et al., Corrosion Properties of Oxygen Plasma Immersion Ion Implantation Treated Magnesium, Surf. Coat. Technol., 2007, 201(19–20), p 8267–8272.

    Article  CAS  Google Scholar 

  33. A. Bakkar and V.J.C.S. Neubert, Improving Corrosion Resistance of Magnesium-Based Alloys by Surface Modification with Hydrogen by Electrochemical Ion Reduction (EIR) and by Plasma Immersion Ion Implantation (PIII), Corros. Sci., 2005, 47(5), p 1211–1225.

    Article  CAS  Google Scholar 

  34. X.B. Tian et al., Corrosion Resistance Improvement of Magnesium Alloy Using Nitrogen Plasma Ion Implantation, Surf. Coat. Technol., 2005, 198(1–3), p 454–458.

    Article  CAS  Google Scholar 

  35. R. Asri et al., Corrosion and Surface Modification on Biocompatible Metals: A Review, Mater. Sci. Eng., C, 2017, 77, p 1261–1274.

    Article  CAS  Google Scholar 

  36. D. Krupa et al., Effect of Phosphorus-Ion Implantation on the Corrosion Resistance and Biocompatibility of Titanium, Biomaterials, 2002, 23(16), p 3329–3340.

    Article  CAS  Google Scholar 

  37. D. Krupa et al., Effect of Dual Ion Implantation of Calcium and Phosphorus on the Properties of Titanium, Biomaterials, 2005, 26(16), p 2847–2856.

    Article  CAS  Google Scholar 

  38. S. Ferdjani et al., Phosphorus Implantation in Titanium: Application to Calibration Analysis, J. Alloy. Compd., 1991, 177(2), p 265–272.

    Article  CAS  Google Scholar 

  39. S. Baunack et al., Depth Distribution and Bonding States of Phosphorus Implanted in Titanium Investigated by AES, XPS and SIMS, Surf. Interface Anal., 1998, 26(6), p 471–479.

    Article  CAS  Google Scholar 

  40. E. Wieser et al., Modification of Titanium by Ion Implantation of Calcium and/or Phosphorus, Surf. Coat. Technol., 1999, 111(1), p 103–109.

    Article  CAS  Google Scholar 

  41. H.A. Acciari et al., Surface Modifications by Both Anodic Oxidation and Ion Beam Implantation on Electropolished Titanium Substrates, Appl. Surf. Sci., 2019, 487, p 1111–1120.

    Article  CAS  Google Scholar 

  42. A. Panepinto, D. Cossement, and R. Snyders, Experimental and Theoretical Study of the Synthesis of N-Doped TiO2 by N Ion Implantation of TiO2 Thin Films, Appl. Surf. Sci., 2021, 541, p 148493.

    Article  CAS  Google Scholar 

  43. M. Hashmi et al., Effect of Different CaO/MgO Ratios on the Structural and Mechanical Properties of Bioactive Glass-Ceramics, J. Ceram.-Silikáty, 2012, 56(4), p 347–351.

    CAS  Google Scholar 

  44. I. Ismail et al., Determination of the Crystallite Size and Crystal Structure of Magnesum Powder by X-Ray Diffraction, J. Nat., 2020, 20(3), p 61–65.

    Article  Google Scholar 

  45. Q. Liu et al., Crystalline Red Phosphorus Nanoribbons: Large-Scale Synthesis and Electrochemical Nitrogen Fixation, Angew. Chem., 2020, 59(34), p 14383–14387.

    Article  CAS  Google Scholar 

  46. M. Hashmi and S.A.J.P.I.N.S.M.I. Shah, Dissolution Behavior of Bioactive Glass Ceramics with Different CaO/MgO Ratios in SBF-K9 and r-SBF, Prog. Nat. Sci. Mater. Int., 2014, 24(4), p 354–363.

    Article  CAS  Google Scholar 

  47. F. Aumayr et al., Single Ion Induced Surface Nanostructures: A Comparison Between Slow Highly Charged and Swift Heavy Ions, J. Phys. Condens. Matter, 2011, 23(39), p 393001.

    Article  Google Scholar 

  48. S. Habenicht, W. Bolse, and K.-P.J.R.O.S.I. Lieb, A Low-Energy Ion Implanter for Surface and Materials Science, Rev. Sci. Instrum., 1998, 69(5), p 2120–2126.

    Article  CAS  Google Scholar 

  49. Lin, C.-D., Review of fundamental processes and applications of atoms and ions. books.google.com, 1993

  50. C. Lemell et al., Image Acceleration of Highly Charged Ions by Metal Surfaces, Phys. Rev. A, 1996, 53(2), p 880.

    Article  CAS  Google Scholar 

  51. C. Lemell et al., On the Nano-Hillock Formation Induced by Slow Highly Charged Ions on Insulator Surfaces, Solid-State Electron., 2007, 51(10), p 1398–1404.

    Article  CAS  Google Scholar 

  52. L. Ali et al., High-Quality Optical Ring Resonator-Based Biosensor for Cancer Detection, IEEE Sens. J., 2019, 20(4), p 1867–1875.

    Article  Google Scholar 

  53. A. El-Said et al., Potential Energy Threshold for Nano-Hillock Formation by Impact of Slow Highly Charged Ions on a CaF2 (1 1 1) Surface, Nucl. Instrum. Methods Phys. Res. Sect. B, 2007, 258(1), p 167–171.

    Article  CAS  Google Scholar 

  54. A.J.T. Kand et al., Electrochemical Evaluation of the Hydroxyapatite Coating Synthesized on the AZ91 by Electrophoretic Deposition Route, Synth. Sinter., 2021, 1(2), p 85–91.

    Article  Google Scholar 

  55. A.T. Tabrizi et al., Tribological Characterization of Hybrid Chromium Nitride Thin Layer Synthesized on Titanium, Surf. Coat. Technol., 2021, 419, p 127317.

    Article  Google Scholar 

  56. A.T. Tabrizi et al., Correction of Archard Equation for Wear Behavior of Modified Pure Titanium, Tribol. Int., 2021, 155, p 106772.

    Article  CAS  Google Scholar 

  57. M. Rahman et al., Microroughness Induced Biomimetic Coating for Biodegradation Control of Magnesium, Mater. Sci. Eng. C, 2021, 121, p 111811.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical assistance of the School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, National Center for Physics Islamabad, and GIK Institute of technology Topi, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Arshad or Saqlain A. Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asdi, M.H., Khan, M.U.A., Hussain, J. et al. Effect of Phosphorous Ion Implantation on the Surface, Crystal Structure, Mechanical, and Electrochemical Properties of Bioresorbable Magnesium for Biomedical Applications. J. of Materi Eng and Perform 31, 7695–7704 (2022). https://doi.org/10.1007/s11665-022-06763-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06763-y

Keywords

Navigation