Log in

Study of the Orientation Relationship of the Residual α2(Ti3Al) in γ(TiAl) Sheet After Heat Treatment

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the γ(TiAl) sheets were prepared using Ti and Al foils by cold rolling and diffusion annealing, followed by hot isostatic pressing. Heat treatment was carried out at 1250 °C and 1280 °C and a holding time of 12 h. X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM were employed to analyze the microstructure and phase composition of the obtained material. The results revealed that the alloy mainly consisted of α2(Ti3Al) and γ(TiAl) phases. The residual α2(Ti3Al) was found in the grains, and the γ(TiAl) phase formed the matrix structure. A calculation of the mismatch degree revealed that the presence of α2(Ti3Al) could strengthen the matrix. After heat treatment at 1280 °C for 12 h, the degree of mismatch between the α2(Ti3Al) and γ(TiAl) phases was smaller, and the TiAl alloy with a high content of the γ(TiAl) phase was easier to prepare. The orientation relationship between the γ(TiAl) and α2(Ti3Al) phases after heat treatment at different temperatures was examined. After heat treatment at 1280 °C for 12 h, Ti3Al and the TiAl matrix exhibited a preferential orientation relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. A. Mohammadnejad, A. Bahrami and L.T. Khajavi, Microstructure and Mechanical Properties of Spark Plasma Sintered Nanocrystalline TiAl-xB Composites (0.0 < x < 1.5 at.%) Containing Carbon Nanotubes, J. Mater. Eng. Perform., 2021, 30, p 4380–4392.

    Article  CAS  Google Scholar 

  2. B. Chen, Z.S. Xu, Y. Liu, B. Xue and W.D. Ma, Tribological Performance and Tribofilm Evolution of TiAl Matrix Composites with Silver and Titanium Diboride at Elevated Temperatures, J. Mater. Eng. Perform., 2020, 29, p 5655–5662.

    Article  CAS  Google Scholar 

  3. L.K. Wu, J.J. Wu, W.Y. Wu, F.H. Cao and M.Y. Jiang, Sol–gel-Based Coatings for Oxidation Protection of TiAl Alloys, J. Mater. Sci., 2020, 55, p 6330–6351.

    Article  CAS  Google Scholar 

  4. W. Sun, F.H. You, F.T. Kong, X.P. Wang and Y.Y. Chen, Effect of Residual Stresses on the Mechanical Properties of Ti-TiAl Laminate Composites Fabricated by Hot-Pack Rolling, Mater. Charact., 2020, 166, p 110394.

    Article  CAS  Google Scholar 

  5. W. Wang, H.X. Zhou, Q.J. Wang, Y. Gao and K.S. Wang, Influence of Mechanical Alloying and Sintering Temperature on the Microstructure and Mechanical Properties of a Ti-22Al-25Nb Alloy, J. Mater. Eng. Perform., 2020, 56, p 815–827.

    Google Scholar 

  6. J.G. Li, R. Hu, J.R. Yang, Z.T. Gao, K.R. Zhang and X.Y. Wang, Evolution and Micromechanical Properties of Interface Structures in TiNbf/TiAl Composites Prepared by Powder Metallurgy, J. Mater. Sci., 2020, 55, p 12421–12433.

    Article  CAS  Google Scholar 

  7. R.R. Chen, Q. Wang, Y.H. Yang, J.J. Guo, Y.Q. Su, H.S. Ding and H.Z. Fu, Brittle–Ductile Transition During Creep in Nearly and Fully Lamellar High-Nb TiAl Alloys, Intermetallics, 2018, 93, p 47–54.

    Article  CAS  Google Scholar 

  8. L. Song, X.G. Hu, T.B. Zhang and J.S. Li, Precipitation Behaviors in a Quenched High Nb-Containing TiAl Alloy During Annealing, Intermetallics, 2017, 89, p 79–85.

    Article  CAS  Google Scholar 

  9. H.W. Liu, P.D. Bishop and K.P. Plucknett, Densification Behaviour and Microstructural Evolution of Ti-48Al Consolidated by Spark Plasma Sintering, J. Mater. Sci., 2017, 52, p 613–627.

    Article  CAS  Google Scholar 

  10. M. Perez-Bravo, I. Madariaga, K. Ostolaza and M. Tello, Microstructural Refinement of a TiAl Alloy by a Two Step Heat Treatment, Scr. Mater., 2005, 53, p 1141–1146.

    Article  CAS  Google Scholar 

  11. S. Bolz, M. Oehring, J. Lindemann, F. Pyczak, J. Paul, A. Stark, A. Lippmann and S. Schrüfer, Microstructure and Mechanical Properties of a Forged β-Solidifying γ-TiAl Alloy in Different Heat Treatment Conditions, Intermetallics, 2015, 58, p 71–83.

    Article  CAS  Google Scholar 

  12. S.L. Shu, F. Qiu, C.Z. Tong, X.N. Shan and Q.C. Jiang, Effect of Fe, Co and Ni elements on the ductility of TiAl alloy, J. Alloys. Compd., 2014, 617, p 302–305.

    Article  CAS  Google Scholar 

  13. H.Z. Niu, S.L. **ao, F.T. Kong, C.J. Zhang and Y.Y. Chen, Microstructure Characterization and Mechanical Properties of TiB2/TiAl In Situ Composite by Induction Skull Melting Process, Mater. Sci. Eng. A, 2012, 532, p 522–527.

    CAS  Google Scholar 

  14. D.L. Sun, T. Sun, Q. Wang, X.L. Han, Q. Guo and G.H. Wu, Fabrication of in situ Ti2AlN/TiAl Composites by Reaction Hot Pressing and Their Properties, J. Wuhan. Univ. Technol. Mater. Sci. Ed., 2014, 29, p 126–130.

    Article  CAS  Google Scholar 

  15. D.D. Gu, Z.Y. Wang, Y.F. Shen, Q. Li and Y.F. Li, In-situ TiC Particle Reinforced Ti-Al Matrix Composites: Powder Preparation by Mechanical Alloying and Selective Laser Melting Behavior, Appl. Surf. Sci., 2009, 255, p 9230–9240.

    Article  CAS  Google Scholar 

  16. X.J. Song, H.Z. Cui, N. Hou, N. Wei, Y. Han, J. Tian and Q. Song, Lamellar Structure and Effect of Ti2AlC on Properties of Prepared in-situ TiAl Matrix Composites, Ceram. Int., 2016, 42, p 13586–13592.

    Article  CAS  Google Scholar 

  17. Y. Zhou, D.L. Sun, D.P. Jiang, X.L. Han, Q. Wang and G.H. Wu, Microstructural Characteristics and Evolution of Ti2AlN/TiAl Composites with a Network Reinforcement Architecture During Reaction Hot Pressing Processing, Mater. Charact., 2018, 80, p 28–35.

    Article  Google Scholar 

  18. L.Y. **ang, F. Wang, J.F. Zhu and X.F. Wang, Mechanical Properties and Microstructure of Al2O3/TiAl in situ Composites Doped with Cr, Mater. Sci. Eng. A, 2011, 528, p 3337–3341.

    Article  Google Scholar 

  19. H. Fukutomi, M. Ueno, M. Nakamura, T. Suzuki and S. Kikuchi, Production of TiAl Sheet with Orient Lamellar Microstructure by Diffusional Reaction of Aluminum and Textured Titanium Foils, J. Mater. Trans. JIM., 1999, 40, p 654.

    Article  CAS  Google Scholar 

  20. R.G. Zhang and V.L. Acoff, Processing Sheet Materials by Accumulative Roll Bonding and Reaction Annealing from Ti/Al/Nb Elemental Foils, Mater. Sci. Eng. A, 2007, 463, p 67–73.

    Article  Google Scholar 

  21. Y.G. Zhang, Y.F. Han, G.L. Cheng, J.T. Guo, X.J. Wang and D. Feng, Structural Intermetallics, National Defence Industry Press, Bei**g, 2001.

    Google Scholar 

  22. J. Boddoes, W. Wallace and L. Zhao, Current Understanding of Creep Behavior of near γ-Titanium Aluminides, Int. Mater. Rev., 1995, 40, p 197.

    Article  Google Scholar 

  23. D. Hu, Effect of Composition on Grain Refinement in Ti Al-Based Alloys, Intermetallics, 2001, 9, p 1037–1043.

    Article  CAS  Google Scholar 

  24. H.Q. Che and Q.C. Fan, Microstructural Evolution During the Ignition/Quenching of Pre-Heated Ti/3Al Powders, J. Alloys. Compd., 2009, 475, p 184–190.

    Article  CAS  Google Scholar 

  25. Y.J. Wu and T. Lan, Study on Infiltration Combustion Synthesis (ICS) of TiAl Intermetallic Compound, Rare Met. Mater. Eng., 1996, 25, p 17–20.

    CAS  Google Scholar 

  26. L.M. Kang, Y.J. Cai, X.C. Luo, Z.J. Li, X.B. Liu, Z. Wang, Y.Y. Li and C. Yang, Bimorphic Microstructure in Ti-6Al-4V Alloy Manipulated by Spark Plasma Sintering and in-situ Press Forging, Scripta Mater., 2021, 193, p 43–48.

    Article  CAS  Google Scholar 

  27. C. Yang, L.M. Kang, X.X. Li, W.W. Zhang, D.T. Zhang, Z.Q. Fu, Y.Y. Li, L.C. Zhang and E.J. Lavernia, Bimodal Titanium Alloys with Ultrafine Lamellar Eutectic Structure Fabricated by Semi-Solid Sintering, Acta Mater., 2017, 132, p 491–502.

    Article  CAS  Google Scholar 

  28. P. Liu, D.L. Sun, X.L. Han and Q. Wang, Investigation on the Crystallographic Orientation Relationships and Interface Atomic Structures in an in-situ Ti2AlN/TiAl Composite, Mater. Des., 2017, 130, p 239–249.

    Article  CAS  Google Scholar 

  29. K. Zhang, Z.J. Zhang, X.X. Lu, K. Li, Y. Du, J.Z. Long, T. Xu, H. Zhang, L. Chen and Y. Kong, Microstructure and Composition of the Grain/Binder Interface in WC-Ni3Al Composites, Int. Refract. Met. Hard. Mater., 2014, 44, p 88–93.

    Article  Google Scholar 

  30. P. Liu, “Atomic-Scale Investigation on the Ti2AlN/TiAl Interface Models and Deformation Mechanisms,” PhD Thesis, Harbin Institute of Technology, 2019.

  31. H.W. Tian and M. Nemoto, Precipitation Behavior of Nitrides in L10-Ordered TiAl, Intermetallics, 2005, 13, p 1030–1037.

    Article  CAS  Google Scholar 

  32. H.Y. Zhang, X.J. Liu, S.Y. Yang, H.Y. Jiang, Z. Shi, M.J. Yang and C.P. Wang, The Clarification of α’’ Phase Precipitate from β Phase in Ti-15Mn Alloy by Mismatch Theory, Mater. Lett., 2017, 202, p 138–141.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51871012), Bei**g Natural Science Foundation (No. 2162024), Fundamental Research Funds for the Central Universities (No. FRF-GF-19-023B), and National Program on Key Basic Research Project (973 Program) (No. 2011CB605502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiqi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, L. & Ge, G. Study of the Orientation Relationship of the Residual α2(Ti3Al) in γ(TiAl) Sheet After Heat Treatment. J. of Materi Eng and Perform 31, 4224–4231 (2022). https://doi.org/10.1007/s11665-021-06490-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06490-w

Keywords

Navigation