Log in

Friction Spot Extrusion Welding on Dissimilar Materials AA2024-T3 to AA5754-O: Effect of Shoulder Plunge Depth

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present investigation, friction spot extrusion welding was investigated for dissimilar AA2024-T3 and AA5754-O materials, under the effect of three different shoulder plunge depths of 0.25, 0.35 and 0.45 mm, kee** other parameters constant. The welded specimens were evaluated by visual inspection, optical microscopy, scanning electron microscopy, electron backscattered diffractions, and tensile testing. The results revealed that the effective metallurgical bonding and mechanical locking were obtained in case of weld produced by plunge depth of 0.45 mm. The metallurgical bonding is obtained between extruded material and surfaces of predrilled cavity, whereas mechanical locking is obtained through filling an extruded material in the predrilled cavity. The plunge depth variations influence the grain structures of processed zones. Increased plunge depth of 0.45 mm results in effective materials mixing with zigzag pattern of oxide layer mixed in the stir zone. In case of weld produced by plunge depth of 0.25 mm, the oxide layer was found as separating layer between workpieces. The weld produced by maximum plunge depth of 0.45 mm was resulted to higher fracture load of 5198 N. Trans-granular ductile fracture was observed for weld produced by plunge depth of 0.45 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Martinsen, S.J. Hu, and B.E. Carlson, Joining of Dissimilar Materials, CIRP Ann. Manuf. Technol., 2015, 64, p 679–699. https://doi.org/10.1016/j.cirp.2015.05.006

    Article  Google Scholar 

  2. M. Haghshenas and A.P. Gerlich, Joining of Automotive Sheet Materials by Friction-Based Welding Methods: A Review, Eng. Sci. Technol. Int. J., 2018, 21, p 130–148. https://doi.org/10.1016/j.jestch.2018.02.008

    Article  Google Scholar 

  3. W. Thomas and E. Nicholas, Friction Stir Welding for the Transportation Industries, Mater. Des., 1997, 18, p 269–273. https://doi.org/10.1016/S0261-3069(97)00062-9

    Article  CAS  Google Scholar 

  4. K.P. Mehta, A Review on Friction-Based Joining of Dissimilar Aluminum-Steel Joints, J. Mater. Res., 2019, 34, p 78–96. https://doi.org/10.1557/jmr.2018.332

    Article  CAS  Google Scholar 

  5. A. Mehrani Milani, M. Paidar, A. Khodabandeh, and S. Nategh, Influence of Filler Wire and Wire Feed Speed on Metallurgical and Mechanical Properties of MIG Welding-Brazing of Automotive Galvanized Steel/5754 Aluminum Alloy in a Lap Joint Configuration, Int. J. Adv. Manuf. Technol., 2016, 82, p 1495–1506

    Article  Google Scholar 

  6. M. Paidar, O. Ojo, A. Moghanian, H.K. Pabandi, and M. Elsa, Pre-Threaded Hole Friction Stir Spot Welding of AA2219/PP-C30S Sheets, J. Mater. Process. Technol., 2019, 273, p 116272. https://doi.org/10.1016/j.jmatprotec.2019.116272

    Article  CAS  Google Scholar 

  7. M. Paidar, K. Tahani, R. Vaira Vignesh, O.O. Ojo, H.R. Ezatpour, and A. Moharrami, Modified Friction Stir Clinching of 2024-T3 to 6061-T6 Aluminium Alloy: Effect of Dwell Time and Precipitation-Hardening Heat Treatment, Mater. Sci. Eng. A, 2020, 791, p 13973. https://doi.org/10.1016/j.msea.2020.139734

    Article  CAS  Google Scholar 

  8. M. Paidar, R. Vaira Vignesh, A. Khorram, O. Ojo, A. Rasoulpouraghdam, and I. Pustokhina, Dissimilar Modified Friction Stir Clinching of AA2024-AA6061 Aluminum Alloys: Effects of Materials Positioning, J. Mater. Res. Technol., 2020, 9, p 6037–6047. https://doi.org/10.1016/j.jmrt.2020.04.007

    Article  CAS  Google Scholar 

  9. S. Memon, M. Paidar, S. Sadreddini, K. Cooke, B. Babaei, and O.O. Ojo, Mechanical and microstructural aspects of the hybrid joint of PP-C30S and 2219 aluminum alloy. Results Phys., 2020, 19, p 103629

  10. Z. Shen, Y. Ding, and A.P. Gerlich, Advances in Friction Stir Spot Welding, Crit. Rev. Solid State Mater. Sci., 2019, https://doi.org/10.1080/10408436.2019.1671799

    Article  Google Scholar 

  11. T.Y. Pan, Friction Stir Spot Welding (FSSW)—A Literature Review. SAE Tech Pap 2007 (2007). https://doi.org/10.4271/2007-01-1702

  12. K.P. Mehta and R. Patel, On fsw Keyhole Removal to Improve Volume Defect Using Pin Less Tool, Key Eng Mater, 2019, 821, p 215–221. https://doi.org/10.4028/www.scientific.net/KEM.821.215

    Article  Google Scholar 

  13. K.P. Mehta, R. Patel, H. Vyas, S. Memon, and P. Vilaça, Repairing of Exit-Hole in Dissimilar Al-Mg Friction Stir Welding: Process and Microstructural Pattern, Manuf. Lett., 2020, 23, p 67–70. https://doi.org/10.1016/j.mfglet.2020.01.002

    Article  Google Scholar 

  14. Y.X. Huang, B. Han, Y. Tian, H.J. Liu, S.X. Lv, J.C. Feng et al., New Technique of Filling Friction Stir Welding, Sci. Technol. Weld. Join., 2011, 16, p 497–501. https://doi.org/10.1179/1362171811Y.0000000032

    Article  CAS  Google Scholar 

  15. S.A. Behmand, S.E. Mirsalehi, H. Omidvar, and M.A. Safarkhanian, Filling Exit Holes of Friction Stir Welding Lap Joints Using Consumable Pin Tools, Sci. Technol. Weld. Join., 2015, 20, p 330–336. https://doi.org/10.1179/1362171815Y.0000000018

    Article  CAS  Google Scholar 

  16. Z. Xu, Z. Li, S. Ji, and L. Zhang, Refill Friction Stir Spot Welding of 5083-O Aluminum Alloy, J. Mater. Sci. Technol., 2018, 34, p 878–885. https://doi.org/10.1016/j.jmst.2017.02.011

    Article  Google Scholar 

  17. M. Reimann, J. Goebel, and J.F. dos Santos, Microstructure and Mechanical Properties of Keyhole Repair Welds in AA 7075-T651 Using Refill Friction Stir Spot Welding, Mater. Des., 2017, 132, p 283–294. https://doi.org/10.1016/j.matdes.2017.07.013

    Article  CAS  Google Scholar 

  18. M. Reimann, J. Goebel, T.M. Gartner, and J.F. dos Santos, Refilling Termination Hole in AA 2198–T851 by Refill Friction Stir Spot Welding, J. Mater. Process. Technol., 2017, 245, p 157–166. https://doi.org/10.1016/j.jmatprotec.2017.02.025

    Article  CAS  Google Scholar 

  19. M. Paidar, S. Ghavamian, O.O. Ojo, A. Khorram, and A. Shahbaz, Modified Friction Stir Clinching of Dissimilar AA2024-T3 to AA7075-T6: Effect of Tool Rotational Speed and Penetration Depth, J. Manuf. Process., 2019, 47, p 157–171. https://doi.org/10.1016/j.jmapro.2019.09.028

    Article  Google Scholar 

  20. M. Paidar, O.O. Ojo, A. Moghanian, A.S. Karapuzha, and A. Heidarzadeh, Modified Friction Stir Clinching with Protuberance-Keyhole Levelling: A Process for Production of Welds with High Strength, J. Manuf. Process., 2019, 41, p 177–187. https://doi.org/10.1016/j.jmapro.2019.03.030

    Article  Google Scholar 

  21. M. Paidar, R. Vaira Vignesh, A. Moharrami, O.O. Ojo, A. Jafari, and S. Sadreddini, Development and Characterization of Dissimilar Joint Between AA2024-T3 and AA6061-T6 by Modified Friction Stir Clinching Process, Vacuum, 2020, 176, p 109298

    Article  CAS  Google Scholar 

  22. P. Gao, Y. Zhang, and K.P. Mehta, Metallurgical and Mechanical Properties of Al–Cu Joint by Friction Stir Spot Welding and Modified Friction Stir Clinching, Met. Mater. Int., 2020, https://doi.org/10.1007/s12540-020-00759-w

    Article  Google Scholar 

  23. J. Han, M. Paidar, R.V. Vignesh, K.P. Mehta, A. Heidarzadeh, and O.O. Ojo, Effect of Shoulder Features During Friction Spot Extrusion Welding of 2024-T3 to 6061-T6 Aluminium Alloys, Arch. Civ. Mech. Eng., 2020, 20, p 84. https://doi.org/10.1007/s43452-020-00086-2

    Article  Google Scholar 

  24. T.P. Saju and R.G. Narayanan, Dieless Friction Stir Extrusion Joining of Aluminum Alloy Sheets with a Pinless Stir Tool by Controlling Tool Plunge Depth, J. Mater. Process. Technol., 2020, 276, p 116416. https://doi.org/10.1016/j.jmatprotec.2019.116416

    Article  CAS  Google Scholar 

  25. T.P. Saju and R.G. Narayanan, Dieless Friction Stir Lap Joining of AA 5050-H32 with AA 6061-T6 at Varying Pre-Drilled Hole Diameters, J. Manuf. Process., 2020, 53, p 21–33. https://doi.org/10.1016/j.jmapro.2020.01.048

    Article  Google Scholar 

  26. T.P. Saju, R.G. Narayanan, and B.S. Roy, Effect of Pinless Tool Shoulder Diameter on Dieless Friction Stir Extrusion Joining of AA 5052-H32 and AA 6061-T6 Aluminum Alloy Sheets, J. Mech. Sci. Technol., 2019, 33, p 3981–3997. https://doi.org/10.1007/s12206-019-0136-1

    Article  Google Scholar 

  27. G.J. Zhang, C.Y. **ao, and O.O. Ojo, Dissimilar Friction Stir Spot Welding of AA2024-T3/AA7075-T6 Aluminum Alloys Under Different Welding Parameters and Media, Def. Technol., 2020, https://doi.org/10.1016/j.dt.2020.03.008

    Article  Google Scholar 

  28. R. Suryanarayanan and V.G. Sridhar, Effect of Process Parameters in Pinless Friction Stir Spot Welding of Al 5754-Al 6061 Alloys, Metallogr. Microstruct. Anal., 2020, 9, p 261–272. https://doi.org/10.1007/s13632-020-00626-5

    Article  CAS  Google Scholar 

  29. A.M. Da Silva, E. Aldanondo, I. Olaran, P. Alvarez, and A. Echeverria, Effect of joining parameters on performance of similar and dissimilar AA5754-H22 and AA6082-T6 friction stir spot welded aluminium alloys, SAE Tech Pap, 2010. https://doi.org/10.4271/2010-01-1155

  30. A. Gerlich, M. Yamamoto, and T.H. North, Local Melting and Tool Slippage During Friction Stir Spot Welding of Al-Alloys, J. Mater. Sci., 2008, 43, p 2–11. https://doi.org/10.1007/s10853-007-1791-7

    Article  CAS  Google Scholar 

  31. Y. Bozkurt, S. Salman, and G. Çam, Effect of Welding Parameters on Lap Shear Tensile Properties of Dissimilar Friction Stir Spot Welded AA 5754-H22/2024-T3 Joints, Sci. Technol. Weld. Join., 2013, 18, p 337–345. https://doi.org/10.1179/1362171813Y.0000000111

    Article  CAS  Google Scholar 

  32. S. Lazarevic, K.A. Ogata, S.F. Miller, G.H. Kruger, and B.E. Carlson, Formation and Structure of Work Material in the Friction Stir Forming Process, J. Manuf. Sci. Eng. Trans. ASME, 2015, 137, p 1–9. https://doi.org/10.1115/1.4030641

    Article  Google Scholar 

  33. O.O. Oladimeji, E. Taban, and E. Kaluc, Understanding the Role of Welding Parameters and Tool Profile on the Morphology and Properties of Expelled Flash of Spot Welds, Mater. Des., 2016, 108, p 518–528. https://doi.org/10.1016/j.matdes.2016.07.013

    Article  CAS  Google Scholar 

  34. H. Okamura, K. Aota, M. Sakamoto, M. Ezumi, and K. Ikeuchi, Behaviourof Oxides During Friction Stir Welding of Aluminium Alloy and Their Effect on Its Mechanical Properties, Weld. Int., 2002, 16, p 266–275. https://doi.org/10.1080/09507110209549530

    Article  Google Scholar 

  35. G. Buffa, D. Campanella, and L. Fratini, On Tool Stirring Action in Friction Stir Welding of Work Hardenable Aluminium Alloys, Sci. Technol. Weld. Join., 2013, 18, p 161–168. https://doi.org/10.1179/174329312X13559959303691

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Paidar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memon, S., Paidar, M., Mehta, K.P. et al. Friction Spot Extrusion Welding on Dissimilar Materials AA2024-T3 to AA5754-O: Effect of Shoulder Plunge Depth. J. of Materi Eng and Perform 30, 334–345 (2021). https://doi.org/10.1007/s11665-020-05387-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05387-4

Keywords

Navigation