Log in

Optimization of Air Plasma Sprayed Thermal Barrier Coating Parameters in Diesel Engine Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present paper, an optimization of thermal barrier coating parameters is performed for diesel engine applications. The substrate is A356.0-T7, a cast aluminum alloy which has a vast application in diesel engines, and the alloy is coated by plasma sprayed ZrO2-8 wt.% Y2O3. Parameters including the feed rate of coating powders, the nozzle distance to specimen surfaces, and the coating thickness are optimized by thermal shock fatigue tests and bending tests. Optimum values of the feed rate and the nozzle distance are 30 g/min and 80 mm, respectively, when the objective is considered as maximizing the bending strength. Thermal shock tests demonstrate that lower thickness of coating layers has a better lifetime. By increasing the coating thickness, the thermal fatigue lifetime decreases. The reason is due to higher order of stresses near the interface of the substrate and the bond coat layer, calculated by a finite element simulation. One suggestion to improve the lifetime is to use multiple layers of coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Prasad and N.K. Samria, Heat Transfer and Stress Fields in the Inlet and Exhaust Valves of a Semi-Adiabatic Diesel Engine, Comput. Struct., 1990, 34(5), p 765–777

    Article  Google Scholar 

  2. A. Moridi, M. Azadi, and G.H. Farrahi, Coating Thickness and Roughness Effect on Stress Distribution of A356.0 Under Thermo-Mechanical Loadings, Proc. Eng., 2011, 10, p 1372–1377

    Google Scholar 

  3. R. Kamo and W. Bryzik, Adiabatic Turbo-Compound Engine Performance Prediction, SAE International, Paper No. 780068, 1978

  4. R. Kamo and W. Bryzik, Ceramics in Heat Engines, SAE International, Paper No. 790645, 1979

  5. R. Kamo and W. Bryzik, Cummins-TRADOCOM Adiabatic Turbo-Compounded Engine Program, SAE International, Paper No. 810070, 1981

  6. W. Bryzik and R. Kamo, TACOM/Cummins Adiabatic Engine Program, SAE International, Paper No. 830314, 1983

  7. R. Kamo and W. Bryzik, Cummins/TACOM Advanced Adiabatic Engine, SAE International, Paper No. 840428, 1984

  8. R.R. Sekar, R. Kamo, and J.C. Wood, Advanced Adiabatic Diesel Engine for Passenger Cars, SAE International, Paper No. 840434, 1984

  9. H.M. Choi, B.S. Kang, W.K. Choi, D.G. Choi, S.K. Choi, J.C. Kim, Y.K. Park, and G.M. Kim, Effect of the Thickness of Plasma Sprayed Coating on Bond Strength and Thermal Fatigue Characteristics, J. Mater. Sci., 1998, 33, p 5895–5899

    Article  CAS  Google Scholar 

  10. T. Hejwowski and A. Weronski, The Effect of Thermal Barrier Coatings on Diesel Engine Performance, Vacuum, 2002, 65, p 427–432

    Article  CAS  Google Scholar 

  11. I. Taymaz, K. Cakir, and A. Mimaroglu, Experimental Study of Effective Efficiency in a Ceramic Coated Diesel Engine, Surf. Coat. Technol., 2005, 200, p 1182–1185

    Article  CAS  Google Scholar 

  12. I. Taymaz, The Effect of Thermal Barrier Coatings on Diesel Engine Performance, Surf. Coat. Technol., 2007, 201, p 5249–5252

    Article  CAS  Google Scholar 

  13. P. Ramu and C.G. Saravanan, Effect of ZrO 2 -Al 2 O 3 and SiC Coating on Diesel Engine to Study the Combustion and Emission Characteristics, SAE International, Paper No. 2009-01-1435, 2009

  14. R. Kitazawa, M. Tanaka, Y. Kagawa, and Y.F. Liu, Damage Evolution of TBC System Under In-Phase Thermo-Mechanical Tests, Mater. Sci. Eng., 2010, B173, p 130–134

    Article  Google Scholar 

  15. C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, and L. Lusvarghi, Failure Mechanism for Thermal Fatigue of Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2009, 18(2), p 223–230

    Article  CAS  Google Scholar 

  16. A. Scrivani, G. Rizzi, U. Bardi, C. Giolli, M. Muniz Miranda, S. Ciattini, A. Fossati, and F. Borgioli, Thermal Fatigue Behavior of Thick and Porous Thermal Barrier Coatings Systems, J. Therm. Spray Technol., 2007, 16(5-6), p 816–821

    Article  Google Scholar 

  17. “Deep Thermo Shock Test,” Test Procedure, FEV Company, No. 12686-0100SD-002

  18. “General Endurance Test,” Test Procedure, Peugeot Company, No. CDI/DII/DIL/SR/T2752/JCO

  19. A. Uzun, I. Cevik, and M. Akcil, Effects of Thermal Barrier Coating on a Turbocharged Diesel Engine Performance, Surf. Coat. Technol., 1999, 116-119, p 505–507

    Article  CAS  Google Scholar 

  20. M. Ranjbar-Far, J. Absi, G. Mariaux, and F. Dubois, Simulation of the Effect of Material Properties and Interface Roughness on the Stress Distribution in Thermal Barrier Coatings Using Finite Element Method, Mater. Des., 2010, 31, p 772–781

    Article  CAS  Google Scholar 

  21. E. Buyukkaya, T. Engin, and M. Cerit, Effects of Thermal Barrier Coating on Gas Emissions and Performance of a LHR Engine with Different Injection Timings and Valve Adjustments, Energy Convers. Manag., 2006, 47, p 1298–1310

    Article  CAS  Google Scholar 

  22. Y. Liu, C. Persson, and J. Wigren, Experimental and Numerical Life Prediction of Thermally Cycled Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(3), p 415–424

    Article  Google Scholar 

  23. “Properties and Selection: Nonferrous Alloys and Special-Purposed Materials,” ASM Handbook, Vol 2, 1992

  24. J.G. Kaufman, “Properties of Aluminum Alloys; Tensile, Creep and Fatigue Data at High and Low Temperature,” The Aluminum Association, Inc. and ASM International, 1999

  25. E. Tzimas, H. Mullejansi, S.D. Peteves, J. Bressers, and W. Stamm, Failure of Thermal Barrier Coating Systems Under Cyclic Thermo-Mechanical Loading, Acta Metall., 2000, 48, p 4699–4707

    CAS  Google Scholar 

  26. M.B. Grieb, H.J. Christ, and B. Plege, Thermo-Mechanical Fatigue of Cast Aluminum Alloys for Cylinder Head Applications: Experimental Characterization and Life Prediction, Proc. Eng., 2010, 2, p 1767–1776

    Article  Google Scholar 

  27. J.H. Lienhard and J.H. Lienhard, A Heat Transfer Textbook, 3rd ed., Phlogiston Press Publication, Cambridge, 2003

    Google Scholar 

  28. D. Zhu and R.A. Miller, Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings, Mater. Sci. Eng., 1998, A245, p 212–223

    CAS  Google Scholar 

  29. R. Soltani, H. Samadi, E. Garcia, and T.W. Coyle, Development of Alternative Thermal Barrier Coatings for Diesel Engines, SAE International, Paper No. 2005-01-0650, 2005

  30. C. Zhang, H.L. Liao, W.Y. Li, G. Zhang, C. Coddet, C.J. Li, C.X. Li, and X.J. Ning, Characterization of YSZ Solid Oxide Fuel Cells Electrolyte Deposited by Atmospheric Plasma Spraying and Low Pressure Plasma Spraying, J. Therm. Spray Technol., 2006, 15(4), p 593–603

    Article  Google Scholar 

  31. T. Gocmez, A. Awarke, and S. Pischinger, A New Low Cycle Fatigue Criterion for Isothermal and Out-of-Phase Thermo-Mechanical Loading, Int. J. Fatigue, 2010, 32, p 769–779

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful for the financial support by Irankhodro Powertrain Company (IPCo.) through a grant number of 450008. Authors also thank Mr. Mafi and Mr. Roozban for experiments and Mr. Dahaghin for the coating process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Farrahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azadi, M., Farrahi, G.H. & Moridi, A. Optimization of Air Plasma Sprayed Thermal Barrier Coating Parameters in Diesel Engine Applications. J. of Materi Eng and Perform 22, 3530–3538 (2013). https://doi.org/10.1007/s11665-013-0629-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0629-5

Keywords

Navigation