Log in

Dynamic Recrystallization during Hot Deformation of 304 Austenitic Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The kinetics of dynamic recrystallization (DRX) during hot compression of 304 austenitic stainless steel was studied over the temperature range of 900-1200 °C and strain rate range of 0.002-0.1 s−1. The initiation and evolution of DRX were investigated using the process variables derived from flow curves. By the regression analysis for conventional hyperbolic sine equation, the activation energy for DRX was determined as Q = 475 kJ mol−1. The temperature and strain rate domain where DRX occurred were identified from the strain rate sensitivity contour map. The critical stress (and strain) for the initiation of DRX was determined from the inflection point on the work hardening rate (θ = dσ/dε) versus flow stress (σ) curve. The saturation stress of the dynamic recovery (DRV) curve was calculated from the θ-σ plot at the same condition at which DRX occurred. Progress of fraction recrystallization was determined from the difference between the generated DRV curve and the experimental DRX curve. In addition, the microstructural evolution at different strain levels during DRX was characterized and compared with the calculated fraction recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Hosford, Mechanical Behavior of Materials, Cambridge University Press, New York, 2005, p 99–120

    Book  Google Scholar 

  2. Q.G. Zheng, T. Ying, and Z. Jie, Dynamic Softening Behaviour of AZ80 Magnesium Alloy during Upsetting at Different Temperatures and Strain Rates, Proc. Inst. Mech. Eng., 2010, 224(11), p 1707–1716

    Article  Google Scholar 

  3. G.Z. Quan, K.W. Liu, J. Zhou, and B. Chen, Dynamic Softening Behaviors of 7075 Aluminum Alloy, Trans. Nonferrous Met. Soc., 2009, 19(suppl3), p S537–S541.

    Google Scholar 

  4. A. Momeni, K. Dehghani, H. Keshmiria, and G.R. Ebrahimi, Hot Deformation Behavior and Microstructural Evolution of a Superaustenitic Stainless Steel, Mater. Sci. Eng., A, 2010, 527(6), p 1605–1611

    Article  Google Scholar 

  5. Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42(3), p 470–477

    Article  CAS  Google Scholar 

  6. S.I. Kim and Y.C. Yoo, Dynamic Recrystallization Behavior of AISI, 304 Stainless Steel, Mater. Sci. Eng., A, 2001, 311(1-2), p 108–113

    Article  Google Scholar 

  7. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138

    Article  CAS  Google Scholar 

  8. C. Zener and H. Hollomon, Effect of Strain Rate upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32

    Article  Google Scholar 

  9. R. Kapoor and J.K. Chakravartty, Characterization of Hot Deformation Behaviour of Zr-2.5Nb in β Phase, J. Nucl. Mater., 2002, 306(2-3), p 126–133

    Article  CAS  Google Scholar 

  10. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, Optimization of Hot Workability in Stainless Steel-type AISI, 304L using Processing Maps, Metal. Mater. Trans. A, 1992, 23(11), p 3093–3103

    Article  Google Scholar 

  11. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, Processing Maps for Hot Working of Commercial Grade Wrought Stainless Steel Type AISI, 304, Mater. Sci. Eng., A, 1994, 177(1-2), p 143–149

    Article  CAS  Google Scholar 

  12. H.J. McQueen and J.J. Jonas, Recovery and Recrystallisation during High Temperature Deformation, Treatise Mater. Sci. Technol., 1975, 6, p 393–493

    CAS  Google Scholar 

  13. N.D. Ryan and H.J. McQueen, Comparison of Dynamic Softening in 301, 304, 316 and 317 Stainless Steels, High Temp. Technol., 1990, 8(3), p 185–200

    CAS  Google Scholar 

  14. J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin, The Avrami Kinetics of Dynamic Recrystallisation, Acta Mater., 2009, 57(9), p 2748–2756

    Article  CAS  Google Scholar 

  15. J.I. Gutierrez, F.R. Castro, J.J. Urcola, and M. Fuentes, Static Recrystallization Kinetics of Commercial Purity Aluminium after Hot Deformation within the Steady State Regime, Mater. Sci. Eng., A, 1988, 102(1), p 77–84

    Article  Google Scholar 

  16. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, UK, 1996, p 363-392

  17. M. Hatherly, A.S. Malin, C.M. Carmichael, F.J. Humphreys, and J. Hirsch, Deformation Processes in Hot Worked Copper and α Brass, Acta Metall., 1986, 34(11), p 2247–2257

    Article  CAS  Google Scholar 

  18. T. Sakai, M.G. Akben, and J.J. Jonas, Dynamic Recrystallization during the Transient Deformation of a Vanadium Microalloyed Steel, Acta Metall., 1983, 31(4), p 631–642

    Article  CAS  Google Scholar 

  19. G.H. Akbari, C.M. Sellars, and J.A. Whiteman, Microstructural Development during Warm Rolling of an IF Steel, Acta Mater., 1997, 45(12), p 5047–5058

    Article  CAS  Google Scholar 

  20. A. Belyakov, K. Tsuzaki, H. Miura, and T. Sakai, Effect of Initial Microstructures on Grain Refinement in a Stainless Steel by Large Strain Deformation, Acta Mater., 2003, 51(3), p 847–861

    Article  CAS  Google Scholar 

  21. R. Le Gall and J.J. Jonas, Solute Drag Effects during the Dynamic Recrystallization of Nickel, Acta Mater., 1999, 47(17), p 4365–4374

    Article  Google Scholar 

  22. H. Yamagata, Y. Ohuchida, N. Saito, and M. Otsuka, Nucleation of New Grains during Discontinuous Dynamic Recrystallization of 99.998 mass% Aluminum at 453 K, Scripta Mater., 2001, 45(9), p 1055–1061

    Article  CAS  Google Scholar 

  23. A.A. Hameda and L. Blaz, Microstructure of Hot-deformed Cu-3.45 wt.% Ti Alloy, Mater. Sci. Eng., A, 1998, 254(1-2), p 83-89.

    Google Scholar 

  24. M. Avrami, Kinetics of Phase Change. I: General Theory, J. Chem. Phys., 1939, 7(12), p 1103–1112

    Article  CAS  Google Scholar 

  25. M. Avrami, Kinetics of Phase Change. II Transformation-time Relations for Random Distribution of Nuclei, J. Chem. Phys., 1940, 8(2), p 212-224

    Google Scholar 

  26. W.A. Johnson and R.F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth, Trans. AIME, 1939, 135, p 416–458

    Google Scholar 

  27. M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado, Effect of Initial Grain Size on Dynamic Recrystallization in High Purity Austenitic Stainless Steels, Acta Mater., 2005, 53(17), p 4605–4612

    Article  Google Scholar 

  28. M.R. Barnett, G.L. Kelly, and P.D. Hodgson, Predicting the Critical Strain for Dynamic Recrystallization using the Kinetics of Static Recrystallisation, Scripta Mater., 2000, 43(4), p 365–369

    Article  CAS  Google Scholar 

  29. S.H. Zahiri, C.H.J. Davies, and P.D. Hodgson, A Mechanical Approach to Quantify Dynamic Recrystallization in Polycrystalline Metals, Scripta Mater., 2005, 52(4), p 299–304

    Article  CAS  Google Scholar 

  30. S.F. Medina and C.A. Hernandez, Modelling Austenite Flow Curves in Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44(1), p 165–171

    Article  CAS  Google Scholar 

  31. A. Dehghan-Manshadi and P.D. Hodgson, Dynamic Recrystallization of Austenitic Stainless Steel under Multiple Peak Flow Behaviours, ISIJ Int., 2007, 47(12), p 1799–1803

    Article  CAS  Google Scholar 

  32. M.J. Luton and C.M. Sellars, Dynamic Recrystallization in Nickel and Nickel-Iron Alloys during High Temperature Deformation, Acta Metall., 1969, 17(8), p 1033–1043.

    Google Scholar 

  33. A. Dehgan-Manshadi, M.R. Barnett, and P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallisation, Metal. Mater. Trans. A, 2008, 39(6), p 1359–1370

    Article  Google Scholar 

  34. A. Sarkar, J.K. Chakravartty, B. Paul, and A.K. Suri, Kinetics of Dynamic Recrystallization in Cobalt: A Study using the Avrami Relation, Phys. Status Solidi A, 2011, 208(4), p 814–818

    Article  CAS  Google Scholar 

  35. E.I. Poliak and J.J. Jonas, A One-parmenter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallisation, Acta Mater., 1996, 44(1), p 127–136

    Article  CAS  Google Scholar 

  36. Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and creep based on one-Parameter Models, Acta Metall., 1984, 32(1), p 57–70

    Article  Google Scholar 

  37. S. Andiawanto, H. Miura, and T. Sakai, Preferential Occurrence of Dynamic Recrystallisation at Triple Junction in Copper Tri-crystal, J Jpn. Inst. Metals, 2002, 66(7), p 760–766

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. I. Samajdar of IIT Bombay for providing the EBSD facility and Dr. Rajeev Kapoor of MMD, BARC, for careful reading of the manuscript. AM wishes to thank Materials Group, BARC, for providing necessary support to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchattiwar, A., Sarkar, A., Chakravartty, J.K. et al. Dynamic Recrystallization during Hot Deformation of 304 Austenitic Stainless Steel. J. of Materi Eng and Perform 22, 2168–2175 (2013). https://doi.org/10.1007/s11665-013-0496-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0496-0

Keywords

Navigation