Log in

Numerical Analysis and Circuit Model of Tunable Dual-Band Terahertz Absorbers Composed of Concentric Graphene Disks and Rings

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, periodic arrays of concentric graphene disks and rings placed near a metallic ground coated by a dielectric substrate are proposed and analyzed by a circuit model approach (CMA) to predict the absorption of the structure in the terahertz (THz) region. As numerical examples, single-band absorbers composed of graphene disks or graphene rings and a dual-band absorber composed of both graphene disks and rings are designed, presented, and proposed. In order to validate the accuracy of the results achieved by the CMA, numerical simulations based on the finite integral technique are applied. One of the significant features of the proposed structures is the tunability of the position of the absorption peak by controlling the chemical potential of the graphene patterns. An additional advantage of the proposed absorbers is that the absorption peaks of the dual-band absorber are stable for both transverse magnetic and transverse electric polarization with incident wave angles up to 70°. The proposed absorber could be used as an essential element in real-time THz detection and sensing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.K. Gramotnev and S.I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).

    Article  CAS  Google Scholar 

  2. S. Dutta, O. Zografos, S. Gurunarayanan, I. Radu, B. Soree, F. Catthoor, and A. Naeemi, Sci. Rep. 7, 17866 (2017).

    Article  Google Scholar 

  3. E. Vlădescu and D. Dragoman, Plasmonics 13, 2189 (2018).

    Article  Google Scholar 

  4. T. Nurmohammadi, K. Abbasian, and R. Yadipour, Optik 142, 550 (2017).

    Article  CAS  Google Scholar 

  5. R. Zafar, P. Chauhan, M. Salim, and G. Singh, Plasmonics 14, 1013 (2019).

    Article  CAS  Google Scholar 

  6. H. Wang, Sci. Rep. 8, 9589 (2018).

    Article  Google Scholar 

  7. M. Islam, J. Sultana, A.A. Rifat, R. Ahmed, A. Dinovitser, B.W.-H. Ng, H.E. Heidepriem, and D. Abbott, Opt. Express 26, 30347 (2018).

    Article  CAS  Google Scholar 

  8. A. Omidvar, M.R. Rashidian Vaziri, and B. Jaleh, Phys. E Low Dimens. Syst. Nanostruct. 103, 239 (2018).

    Article  CAS  Google Scholar 

  9. H.M. Dong, F. Huang, and W. Xu, Phys. E Low Dimens. Syst. Nanostruct. 97, 52 (2018).

    Article  CAS  Google Scholar 

  10. V.W. Brar, M.S. Jang, M. Sherrott, J.J. Lopez, and H.A. Atwater, Nano Lett. 13, 2541 (2013).

    Article  CAS  Google Scholar 

  11. A. Vakil and N. Engheta, Science 332, 1291 (2011).

    Article  CAS  Google Scholar 

  12. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Ron Shen, and P. Wang, Nat. Nanotechnol. 6, 630 (2011).

    Article  CAS  Google Scholar 

  13. S. Asgari, Z.G. Kashani, and N. Granpayeh, J. Opt. 20, 045001 (2018).

    Article  Google Scholar 

  14. Q. Deng, H. Shao, W. He, K. Cheng, J. Hu, B. Sun, X. Wang, G. Liu, and J. Wang, Plasmonics 14, 993 (2019).

    Article  CAS  Google Scholar 

  15. S. Asgari, H. Rajabloo, N. Granpayeh, and H. Oraizi, Chin. Phys. B 27, 084212 (2018).

    Article  Google Scholar 

  16. A. Moazami, M. Hashemi, and N.C. Shirazi, Plasmonics 14, 359 (2019).

    Article  CAS  Google Scholar 

  17. S. Asgari, E. Shokati, and N. Granpayeh, Appl. Opt. 58, 3664 (2019).

    Article  CAS  Google Scholar 

  18. P.R. Tang, J. Li, L.H. Du, Q. Liu, Q.X. Peng, J.H. Zhao, B. Zhu, Z.R. Li, and L.G. Zhu, Opt. Express 26, 30655 (2018).

    Article  CAS  Google Scholar 

  19. S. Asgari, N. Granpayeh, and Z.G. Kashani, IEEE Trans. Nanotechnol. 18, 42 (2018).

    Article  Google Scholar 

  20. S. Asgari and N. Granpayeh, IEEE Trans. Nanotechnol. 17, 533 (2018).

    Article  Google Scholar 

  21. Y. Cai and K.D. Xu, Opt. Express 26, 31693 (2018).

    Article  CAS  Google Scholar 

  22. B. **ao, M. Gu, and S. **ao, Appl. Opt. 56, 5458 (2017).

    Article  CAS  Google Scholar 

  23. H.R. Taghvaee, H. Nasari, and M.S. Abrishamian, Opt. Commun. 383, 11 (2017).

    Article  CAS  Google Scholar 

  24. X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, IET Microw. Antennas Propag. 9, 307 (2015).

    Article  Google Scholar 

  25. H. **ong, M.C. Tang, M. Li, D. Li, and Y.N. Jiang, Plasmonics 13, 857 (2018).

    Article  CAS  Google Scholar 

  26. Z. Wang, M. Zhou, X. Lin, H. Liu, H. Wang, F. Yu, S. Lin, E. Li, and H. Chen, Opt. Commun. 329, 76 (2014).

    Article  CAS  Google Scholar 

  27. L. Qi, C. Liu, and S.M.A. Shah, Carbon 153, 179 (2019).

    Article  CAS  Google Scholar 

  28. Q. Zhou, S. Zha, L.A. Bian, J. Zhang, L. Ding, H. Liu, and P. Liu, J. Phys. D Appl. Phys. 52, 255102 (2019).

    Article  CAS  Google Scholar 

  29. S. Asgari and M. Rahmanzadeh, Opt. Commun. 456, 124623 (2020).

    Article  CAS  Google Scholar 

  30. M. Biabanifard, S. Asgari, S. Biabanifard, and M.S. Abrishamian, Optik 182, 433 (2019).

    Article  CAS  Google Scholar 

  31. G.W. Hanson, J. Appl. Phys. 103, 64302 (2008).

    Article  Google Scholar 

  32. D.M. Pozar, Microwave Engineering, 3rd ed. (New York: Wiley, 2005), pp. 170–187.

    Google Scholar 

  33. F. Costa, A. Monorchio, and G. Manara, IEEE Antennas Propag. Mag. 54, 35 (2012).

    Article  Google Scholar 

  34. T.H. Hand, J. Gollub, S. Sajuyigbe, D.R. Smith, and S.A. Cummer, Apply. Phys. Lett 93, 212504 (2008).

    Google Scholar 

  35. D. Chen, J. Yang, J. Zhang, J. Huang, and Z. Zhang, Sci. Rep. 7, 15836 (2017).

    Article  Google Scholar 

  36. M. Nanli, S. Sun, H. Dong, S. Dong, Q. He, L. Zhou, and L. Zhang, Opt. Express 26, 11728 (2018).

    Article  Google Scholar 

  37. Y. Longfang, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q.H. Liu, Opt. Express 25, 11223 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Ghattan Kashani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabmohammadi, M., Ghattan Kashani, Z. & Sadeghzadeh Sheikhan, R.A. Numerical Analysis and Circuit Model of Tunable Dual-Band Terahertz Absorbers Composed of Concentric Graphene Disks and Rings. J. Electron. Mater. 49, 5721–5729 (2020). https://doi.org/10.1007/s11664-020-08336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08336-y

Keywords

Navigation