Log in

Numerical Simulation of Enhanced-Reliability Filleted-Gate AlGaN/GaN HEMT

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Reliability has been one of the major concerns for AlGaN/GaN high-electron-mobility transistors (HEMTs) over the past decades owing to their high-power operation. Although significant progress has been made in recent years, to position AlGaN/GaN HEMT technology as a disruptive technology, better understanding of reliability phenomena and their enhancement is necessary. Greater strength of physical phenomena such as converse piezoelectric strain, electric field, electron temperature, and Joule heating accelerates the degradation and reduces the lifespan of such devices. A detailed numerical study has been carried out to observe the impact of gate filleting on the performance of a AlGaN/GaN HEMT. It is observed that the converse piezoelectric strain in the AlGaN barrier layer, as well as the electron and lattice temperatures are suppressed due to the filleting of the gate geometry. To understand this more deeply, a comparison is drawn between field-plate rectangular-gate HEMTs and filleted-gate HEMTs with and without a field plate. For the filleted-gate HEMTs with and without a field plate, the electric field and converse piezoelectric strain are lower by 38% and 30%, respectively, as compared with the rectangular-gate HEMT with a field plate. As the filleting radius is increased, the gate leakage current and lattice temperature at the gate/AlGaN interface are reduced and the OFF-state reliability is enhanced, together with a reduction in the converse piezoelectric strain and electron temperature. Based on the presented analysis, a filleted-gate HEMT is proposed as a potential candidate to mitigate damage induced by converse piezoelectric strain, electron temperature, and Joule heating in future AlGaN/GaN-based high-power devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Flack, B.N. Pushpakaran, and S.B. Bayne, J. Electron. Mater. 45, 2673 (2016).

    Article  CAS  Google Scholar 

  2. E.A. Jones, F.F. Wang, and D. Costinett, IEEE Trans. Emerg. Sel. Top. Power Electron. 4, 707 (2016).

    Article  Google Scholar 

  3. G. Meneghesso, M. Meneghini, I. Rossetto, D. Bisi, S. Stoffels, M. Van Hove, S. Decoutere, and E. Zanoni, Semicond. Sci. Technol. 31, 093004 (2016).

    Article  Google Scholar 

  4. B. Sarkar, P. Reddy, F. Kaess, B. Haidet, J. Tweedie, S. Mita, R. Kirste, E. Kohn, R. Collazo, and Z. Sitar, ECS Trans. 80, 29 (2017).

    Article  CAS  Google Scholar 

  5. J. Joh, F. Gao, T. Palacios, and J.A. del Alamo, Microelectron. Reliab. 50, 767 (2010).

    Article  CAS  Google Scholar 

  6. J.A. del Alamo and J. Joh, Microelectron. Reliab. 49, 1200 (2009).

    Article  Google Scholar 

  7. J. Joh and J.A. del Alamo, IEEE Electron. Device Lett. 29, 287 (2008).

    Article  CAS  Google Scholar 

  8. V. Moroz, H.Y. Wong, M. Choi, N. Braga, R.V. Mickevicius, Y. Zhang, and T. Palacios, ECS J. Solid State Sci. Technol. 5, P3142 (2016).

    Article  CAS  Google Scholar 

  9. S. Karmalkar and U.K. Mishra, IEEE Trans. Electron. Devices 48, 1515 (2001).

    Article  CAS  Google Scholar 

  10. M. Tapajna, N. Killat, V. Palankovski, D. Gregusova, K. Cico, J.F. Carlin, N. Grandjean, M. Kuball, and J. Kuzmik, IEEE Trans. Electron. Devices 61, 2793 (2014).

    Article  CAS  Google Scholar 

  11. E.A. Douglas, C.Y. Chang, D.J. Cheney, B.P. Gila, C.F. Lo, L. Lu, R. Holzworth, P. Whiting, K. Jones, G.D. Via, J. Kim, S. Jang, F. Ren and S.J. Pearton, Microelectron. Reliab. 51, 207 (2011).

    Article  CAS  Google Scholar 

  12. Y. Pei, Z. Chen, D. Brown, S. Keller, S. P. Denbaars, and U. K. Mishra. IEEE Electron. Device Lett. 30, 328 (2009).

    Article  CAS  Google Scholar 

  13. A. Endoh, I. Watanabe, A. Kasamatsu, and T. Mimura, in Proceedings of SISPAD (2014), pp. 261–264

  14. Synopsys, Sentaurus Device User Guide, L-2016.03 edn. (2016)

  15. A. Ray, G. Kumar, S. Bordoloi, D.K. Sinha, P. Agarwal, G. Trivedi, in VLSI Design and Test, ed. by B.K. Kaushik, S. Dasgupta, V. Singh (Springer, Singapore, 2017), p. 127.

  16. X. Wang, W. Hu, X. Chen, and W. Lu, IEEE Trans. Electron. Devices 59, 1393 (2012).

    Article  CAS  Google Scholar 

  17. A. Sarua, H. Ji, K.P. Hilton, D.J. Wallis, M.J. Uren, T. Martin, and M. Kuball, IEEE Trans. Electron. Devices 54, 3152 (2007).

    Article  CAS  Google Scholar 

  18. S. Mukherjee, E. Patrick, and M. Law, ECS J. Solid State Sci. Technol. 6, S3093 (2017).

    Article  CAS  Google Scholar 

  19. T. Tanaka, N. Ito, M. Akutsu, K. Chikamatsu, S. Takado, and K. Nakahara, Phys. Status Solidi A 214, 1600925 (2017).

    Article  Google Scholar 

  20. A.Y. Polyakov and I.H. Lee, Mater. Sci. Eng. R Rep. 94, 1 (2015).

    Article  Google Scholar 

  21. M.G. Ancona, S.C. Binari and D.J. Meyer, J. Appl. Phys. 111, 074504 (2012).

    Article  Google Scholar 

  22. E. Zanoni, M. Meneghini, A. Chini, D. Marcon, and G. Meneghesso, IEEE Trans. Electron. Devices 60, 3119 (2013).

    Article  CAS  Google Scholar 

  23. M. Meneghini, M. Bertin, G. dal Santo, A. Stocco, A. Chini, D. Marcon, P. E. Malinowski, G. Mura, E. Musu, M. Vanzi, G. Meneghesso, and E. Zanoni, in International Electron Devices Meeting (2012), pp. 13.3.1–13.3.4

  24. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).

    Article  CAS  Google Scholar 

  25. A. F. M. Anwar, R. T. Webster, and K. V. Smith, Appl. Phys. Lett. 88, 203510 (2006).

    Article  Google Scholar 

  26. H. Huang, Y.C. Liang, G.S. Samudra, T.F. Chang, and C.F. Huang, IEEE Trans. Power Electron. 29, 2164 (2014).

    Article  Google Scholar 

  27. S. Mizuno, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, Jpn. J. Appl. Phys. 41, 5125 (2002).

    Article  CAS  Google Scholar 

  28. N. Braga, R. Mickevicius, R. Gaska, X. Hu, M. S. Shur, M. A. Khan, G. Simin, and J. Yang, J. Appl. Phys. 95, 6409 (2004).

    Article  CAS  Google Scholar 

  29. W.D. Hu, X.S. Chen, F. Yin, J.B. Zhang, and W. Lu, J. Appl. Phys. 105, 084502 (2009).

    Article  Google Scholar 

  30. S.A. Vitusevich, S.A. Danylyuk, N. Klein, M.V. Petrychuk, A. Avksentyev, V.N. Sokolov, V.A. Kochelap, A.E. Belyaev, V. Tilak, J. Smart, and A. Vertiatchikh, Appl. Phys. Lett.82, 748 (2003)

    Article  CAS  Google Scholar 

  31. O. Mitrofanov and M. Manfra, J. Appl. Phys. 95, 6414 (2004).

    Article  CAS  Google Scholar 

  32. T. Zimmermann, D. Deen, Y. Cao, J. Simon, P. Fay, D. Jena, and H.G. **ng, IEEE Electron. Device Lett. 29, 661 (2008).

    Article  CAS  Google Scholar 

  33. S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U.K. Mishra, IEEE Electron. Device Lett. 38, 359 (2017).

    Article  CAS  Google Scholar 

  34. R. Gaska, A. Osinsky, J.W. Yang, and M.S. Shur, IEEE Electron. Device Lett. 19, 89 (1998).

    Article  CAS  Google Scholar 

  35. A. Aouf, F. Djeffal, and F. Douak, in 6th International Conference on Systems and Control (ICSC) (2017), pp. 451–454

  36. J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, and K.F. Brennan, J. Appl. Phys. 83, 4777 (1998).

    Article  CAS  Google Scholar 

  37. V.O. Turin and A.A. Balandin, J. Appl. Phys. 100, 054501 (2006).

    Article  Google Scholar 

  38. M. Rosker, C. Bozada, H. Dietrich, A. Hung, D. Via, S. Binari, E. Vivierios, E. Cohen and J. Hodiak, in International Conference on Compound Semiconductor Manufacturing Technology, CS MANTECH (2009)

  39. P. Mukhopadhyay, A. Bag, U. Gomes, U. Banerjee, S. Ghosh, S. Kabi, E.Y.I. Chang, A. Dabiran, P. Chow, and D. Biswas, J. Electron. Mater. 43, 1263 (2014).

    Article  CAS  Google Scholar 

  40. M. A. der Maur, G. Romano, and A. Di Carlo, in 15th International Workshop on Computer Electronics (2012), pp. 1–4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Ray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 134 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, A., Bordoloi, S., Sarkar, B. et al. Numerical Simulation of Enhanced-Reliability Filleted-Gate AlGaN/GaN HEMT. J. Electron. Mater. 49, 2018–2031 (2020). https://doi.org/10.1007/s11664-019-07905-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07905-0

Keywords

Navigation