Log in

A Simple and Rapid Method to Produce SERS Substrates Using Au Nanoparticles Prepared by Laser Ablation and DVD Template

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Simple and highly sensitive SERS substrates were produced using Au nanoparticles (AuNPs) prepared by laser ablation in water and available Digital Video Discs (DVDs). We used the simple “drop-cast’’ method to deposit AuNPs on the grating pattern surface of a DVD in place of the other methods such as electrochemical deposition, electrophoretic deposition and sputtering method which require some more equipment. AuNPs were proposed to be synthesized in water by laser ablation to form a nearly circular AuNP stain of small size on a DVD surface. The protecting polycarbonate layer of a DVD was removed from the DVD surface. The bare metallic DVD surface was rinsed carefully with ethanol and distilled water. The width of tracks on a DVD surface is around 300 nm and distance between them is around 450 nm. We prepared AuNPs by pulsed laser ablation of a gold piece in distilled water. The colloidal gold nanoparticles were deposited on DVD templates. We studied to produce an effective layer of AuNPs on DVD template for SERS substrates (AuNPs/DVD). The average SERS enhancement factor of the AuNPs/DVD SERS substrates is about 106. The SERS substrates can detect SERS spectra of Malachite Green and Amoxicillin at low concentrations of around 0.1–1 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Strobbia, E. Languirand, and B.M. Cullum, Opt. Eng. 54, 100902 (2015).

    Article  Google Scholar 

  2. J.R. Lombardi and R.L. Birke, Acc. Chem. Res. (2009). https://doi.org/10.1021/ar800249y.

    Article  Google Scholar 

  3. W.E. Smith, Chem. Soc. Rev. 37, 955 (2008).

    Article  CAS  Google Scholar 

  4. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, and R.P. Van Duyne, Nat. Mater. 7, 442 (2008).

    Article  CAS  Google Scholar 

  5. Y.S. Huh, A.J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).

    Article  CAS  Google Scholar 

  6. D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, Anal. Bioanal. Chem. 403, 27 (2012). https://doi.org/10.1007/s00216-011-5631-x.

    Article  CAS  Google Scholar 

  7. C.L. Haynes, A.D. McFarland, and R.P.V. Duyne, Anal. Chem. 77, 338A (2005).

    Article  CAS  Google Scholar 

  8. H. Lin, J. Mock, D. Smith, T. Gao, and M.J. Sailor, J. Phys. Chem. B 108, 11654 (2004).

    Article  CAS  Google Scholar 

  9. C. Fang, A. Agarwal, H. Ji, W.Y. Karen, and L. Yobas, Nanotechnology 20, 405604 (2009).

    Article  CAS  Google Scholar 

  10. X.M. Lin, Y. Cui, Y.H. Xu, B. Ren, and Z.Q. Tian, Anal BioanalChem 394, 1729 (2009). https://doi.org/10.1007/s00216-009-2761-5.

    Article  CAS  Google Scholar 

  11. R.J.C. Brown and M.J.T. Milton, J. Raman Spectrosc. 39, 1313 (2008).

    Article  CAS  Google Scholar 

  12. M.J. Banholzer, J.E. Millstone, L. Qin, and C.A. Mirkin, Chem. Soc. Rev. 37, 885 (2008).

    Article  CAS  Google Scholar 

  13. N. Marquestaut, A. Martin, D. Talaga, L. Servant, S. Ravaine, S. Reculusa, D.M. Bassani, E. Gillies, and F. Lagugné-Labarthet, Langmuir 24, 11313 (2008).

    Article  CAS  Google Scholar 

  14. S. Mohapatra, S. Siddhanta, D.R. Kumar, C. Narayana, and T.K. Maji, Eur J InorgChem 31, 4969 (2010).

    Article  Google Scholar 

  15. W.B. Li, Y.Y. Guo, and P. Zhang, J. Phys. Chem. C 114, 6413 (2010). https://doi.org/10.1021/jp100526v.

    Article  CAS  Google Scholar 

  16. M. Erol, Y. Han, S.K. Stanley, C.M. Stafford, H. Du, and S. Sukhishvili, J. Am. Chem. Soc. 131, 7480 (2009).

    Article  CAS  Google Scholar 

  17. S. Jana, S. Pande, A.K. Sinha, S. Sarkar, M. Pradhan, M. Basu, S. Saha, and T. Pal, J. Phys. Chem. C 113, 1386 (2009).

    Article  CAS  Google Scholar 

  18. B.K. Jena and C.R. Raj, Chem. Mater. 20, 3546 (2008).

    Article  CAS  Google Scholar 

  19. P.F. Liao and A. Wokaun, J. Chem. Phys. 76, 751 (1982).

    Article  CAS  Google Scholar 

  20. F. Le, D.W. Brandl, Y.A. Urzhumov, H. Wang, J. Kundu, N.J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).

    Article  CAS  Google Scholar 

  21. M. Futamata, Y.Y. Yu, and T. Yajima, J. Phys. Chem. C 115, 5271 (2011).

    Article  CAS  Google Scholar 

  22. G. Giallongo, R. Pilot, C. Durante, and G. Granozzi, Plasmonics 6, 725 (2011).

    Article  CAS  Google Scholar 

  23. C. Leordean, B. Marta, A.-M. Gabudean, M. Focsan, I. Botiz, and S. Astilean, Appl. Surf. Sci. 349, 190 (2015).

    Article  CAS  Google Scholar 

  24. A.I. Radu, Y.Y. Ussembayev, M. Jahn, U.S. Schubert, and K. Weber, RSC Adv. 6, 44163 (2016).

    Article  CAS  Google Scholar 

  25. M.K. Nieuwoudt, J.W. Martin, R.N. Oosterbeek, N.I. Novikova, X. Wang, J. Malmström, D.E. William, and M.C. Simpson, Anal. Bioanal. Chem. 408, 4403 (2016).

    Article  CAS  Google Scholar 

  26. T.B. Nguyen, et al., Adv. Nat. Sci. Nanosci. Nanotechnol. 3, 025016 (2012).

    Article  Google Scholar 

  27. A.C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Article  CAS  Google Scholar 

  28. J. Hong, M.K. Park, E.J. Lee, D.E. Lee, D.S. Hwang, and S. Ryu, Sci. Rep. 3, 2700 (2013). https://doi.org/10.1038/s02700.

    Article  Google Scholar 

  29. K. Sivashanmugan, J.D. Liao, B.H. Liu, C.-K. Yao, and S.-C. Luo, Sens. Actuators, B 207, 430 (2015).

    Article  CAS  Google Scholar 

  30. Y. Zhang, W. Yu, L. Pei, K. Lai, B.A. Rasco, and Y. Huang, Food Chem. 169, 80 (2015).

    Article  CAS  Google Scholar 

  31. Q. Cen, Y. He, M. Xu, J. Wang, and Z. Wang, J. Chem. Phys. 142, 114201 (2015).

    Article  Google Scholar 

  32. P. Kumar, R. Khosla, M. Soni, D. Deva, and S.K. Sharma, Sens. Actuators, B 246, 477 (2017).

    Article  CAS  Google Scholar 

  33. S. Schlücker, Angew. Chem. Int. Ed. 53, 2 (2014).

    Article  Google Scholar 

  34. C.X. Fang, J.H. Li, and Y.Z. Liang, J. Instrum. Anal. 31, 541 (2011).

    Google Scholar 

  35. X. Li and Y. Lu, J. Bei**g Inf. Sci. Technol. Univ. 28, 27 (2013).

    CAS  Google Scholar 

  36. A. Calborean, D. Maniu, V. Chis, T. Iliescu, and V.K. Rastogi, J. Optoelectron. Adv. Mater. 9, 680 (2007).

    CAS  Google Scholar 

  37. A. Bebu, L. Szabo, N. Leopold, and L. David, J. Mol. Struct. 993, 52 (2011).

    Article  CAS  Google Scholar 

  38. Wei Ji, Li Wang, He Qian, and Weirong Yao, Spectrosc. Lett. 47, 451 (2014).

    Article  CAS  Google Scholar 

  39. E.C. Le Ru, E. Blackie, M. Mayer, and P.G. Etchegoin, J. Phys. Chem. 111, 13794 (2007).

    Google Scholar 

Download references

Acknowledgments

This research work is supported by the Project ĐTĐLCN-01/18 of University of Science—VNU Hanoi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to The Binh Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.B., Nguyen, N.A. & Ngo, G.L. A Simple and Rapid Method to Produce SERS Substrates Using Au Nanoparticles Prepared by Laser Ablation and DVD Template. J. Electron. Mater. 49, 311–317 (2020). https://doi.org/10.1007/s11664-019-07754-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07754-x

Keywords

Navigation