Log in

Exploring the Structural, Thermal and Dielectric Properties of PVA/Ni0.5Zn0.5Fe2O4 Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nano-Ni0.5Zn0.5Fe2O4 embeded in polyvinyl alcohol (PVA) with different weight ratios (5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 30 wt.%, 40 wt.% and 50 wt.%) were prepared by solution casting. The formation of PVA/Ni0.5Zn0.5Fe2O4 hyprid composite is confirmed through x-ray diffraction, scanning electron micrographs, transmission electron microscopy, and Fourier transform infrared spectroscopy analysis. Thermogravimetric analysis showed that the composite films have thermal stability higher than pure PVA. The complex dielectric constant (ε*), electrical conductivity, electric modulus and impedance spectra of these polymer nanocompsites have been studied over the frequency range 1 Hz–20 MHz. The real permittivity (ε′) of PVA polymer film enhanced while the real electric modulus (M′) decreased by the addition of Ni0.5Zn0.5Fe2O4 nanoparticles. The imaginary part of permittivity has the same trendline of ε′ leading to the increase in its values. These aspects of PVA composites making it a promising material to be used in microwave absorbers depending on the dielectric loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.A. Taha and A. Saleh, Appl. Phys. A Mater. Sci. Process. 124, 600 (2018).

    Article  Google Scholar 

  2. W.E. Mahmoud and A.A. Al-Ghamdi, Polym. Compos. 32, 1143 (2011).

    Article  Google Scholar 

  3. T.A. Taha, Polym. Bull. 76, 903 (2019).

    Article  Google Scholar 

  4. T.A. Taha, N.N. Hendawy, S. El-Rabaie, A. Esmat, and M.K. El-Mansy, Polym. Bull. 76, 4769 (2019).

    Google Scholar 

  5. T.A. Taha, Z. Ismail, and M.M. Elhawary, Appl. Phys. A 124, 307 (2018).

    Article  Google Scholar 

  6. T.A. Taha, J. Mater. Sci. Mater. Electron. 28, 12108 (2017).

    Article  Google Scholar 

  7. A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, and P.C. Ramamurthy, Compos. B Eng. 47, 314 (2013).

    Article  Google Scholar 

  8. I. Fuks-Janczarek, K. Kobayashi, X.M. Chen, M. Oyama, A. Wojciechowski, M. Pepczyńska, and I.V. Kityk, Physica E 64, 1 (2014).

    Article  Google Scholar 

  9. P.K. Khanna, N. Singh, S. Charan, V.V.V.S. Subbarao, R. Gokhale, and U.P. Mulik, Mater. Chem. Phys. 93, 117 (2005).

    Article  Google Scholar 

  10. G. Mago, D.M. Kalyon, and S.C. Jana, J. Nanomater. 2011, 1 (2011).

    Article  Google Scholar 

  11. R. Bouzerara, S. Achour, N. Tabet, and S. Zerkout, Int. J. Nanopart. 4, 10 (2011).

    Article  Google Scholar 

  12. F.M. Zhang, J. Chang, and B. Eberhard, New Carbon Mater. 25, 241 (2010).

    Article  Google Scholar 

  13. G.S. Kim and S.H. Hyun, J. Mater. Sci. 38, 1961 (2003).

    Article  Google Scholar 

  14. G.J. Prichard, Poly (Vinyl Alcohol): Basis Principles and Uses (New York: Gordon and Breach, 1970).

    Google Scholar 

  15. D. Dibbern-Brunelli, T.D.Z. Atvars, I. Joekes, and V.C. Barbosa, J. Appl. Polym. Sci. 69, 645 (1998).

    Article  Google Scholar 

  16. V. Senthil, T. Badapanda, S.N. Kumar, P. Kumar, and S. Panigrahi, J. Polym. Res. 19, 9838 (2012).

    Article  Google Scholar 

  17. M. Hema, S. Selvasekerapandian, and G. Hirankumar, Ionics 13, 483 (2007).

    Article  Google Scholar 

  18. M.B. Muradov, A.S. Abdinov, R.H. Hajimamedov, and G.M. Eyivazova, Surf. Eng. Appl. Electrochem. 45, 167 (2009).

    Article  Google Scholar 

  19. T.A. Taha, S. Elrabaie, and M.T. Attia, J. Mater. Sci. Mater. Electron. 29, 18493 (2018).

    Article  Google Scholar 

  20. H. Donya and T.A. Taha, J. Mater. Sci. Mater. Electron. 29, 8610 (2018).

    Article  Google Scholar 

  21. M.T. Razzak, S.P. Dewi, H. Lely, and E. Taty, Radiat. Phys. Chem. 55, 153 (1999).

    Article  Google Scholar 

  22. R.M. Hodge, G.H. Edward, and G.P. Simon, Polymer 37, 1371 (1996).

    Article  Google Scholar 

  23. H.M. Zidan, J. Appl. Polym. Sci. 88, 1115 (2003).

    Article  Google Scholar 

  24. X.F. Qian, J. Yin, J.C. Huang, Y.F. Yang, X.X. Guo, and Z.K. Zhu, Mater. Chem. Phys. 68, 95 (2001).

    Article  Google Scholar 

  25. R.D. Waldron, Phys. Rev. 99, 1727 (1955).

    Article  Google Scholar 

  26. C.M. Tang, Y.H. Tian, and S.H. Hsu, Materials 8, 4895 (2015).

    Article  Google Scholar 

  27. S.J. Lue, D.T. Lee, J.Y. Chen, C.H. Chiu, C.C. Hu, Y.C. Jean, and J.Y. Lai, J. Membr. Sci. 325, 831 (2008).

    Article  Google Scholar 

  28. P.R. Somani, R. Marimuthu, A.K. Viswanath, and S. Radhakrishnan, Polym. Degrad. Stab. 79, 77 (2003).

    Article  Google Scholar 

  29. B.J. Holland and J.N. Hay, Polymer 42, 6775 (2001).

    Article  Google Scholar 

  30. D. Ša**ović, Z.V. Šaponjić, N. Cvjetićanin, M. Marinović-Cincović, and J.M. Nedeljković, Chem. Phys. Lett. 329, 168 (2000).

    Google Scholar 

  31. Z.H. Mbhele, M.G. Salemane, C.G.C.E. Van Sittert, J.M. Nedeljković, V. Djoković, and A.S. Luyt, Chem. Mater. 15, 5019 (2003).

    Article  Google Scholar 

  32. A.M. El Sayed and S. El-Gamal, J. Polym. Res. 22, 97 (2015).

    Article  Google Scholar 

  33. R. Seoudi, A.B. El-Bailly, W. Eisa, A.A. Shabaka, S.I. Soliman, R.K. Abd El Hamid, and R.A. Ramadan, J. Appl. Sci. Res 8, 658 (2012).

    Google Scholar 

  34. T.A. Taha and A.A. Azab, J. Mol. Struct. 1178, 39 (2019).

    Article  Google Scholar 

  35. Z.M. Dang, L. Wang, Y.I. Yin, Q. Zhang, and Q.Q. Lei, Adv. Mater. 19, 852 (2007).

    Article  Google Scholar 

  36. F. He, S. Lau, H.L. Chan, and J. Fan, Adv. Mater. 21, 710 (2009).

    Article  Google Scholar 

  37. F. Alam, S.A. Ansari, W. Khan, M. Ehtisham Khan, and A.H. Naqvi, Funct. Mater. Lett. 5, 1250026 (2012).

    Article  Google Scholar 

  38. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, and P. Houenou, J. Non Cryst. Solids 45, 57 (1981).

    Article  Google Scholar 

  39. B.P. Sahoo, K. Naskar, R.N.P. Choudhary, S. Sabharwal, and D.K. Tripathy, J. Appl. Polym. Sci. 124, 678 (2012).

    Article  Google Scholar 

  40. G.M. Tsangaris, G.C. Psarras, and N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998).

    Article  Google Scholar 

  41. G.T. Mohanraj, T.K. Chaki, A. Chakraborty, and D. Khastgir, Polym. Eng. Sci. 46, 1342 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Taha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, T.A., Elrabaie, S. & Attia, M.T. Exploring the Structural, Thermal and Dielectric Properties of PVA/Ni0.5Zn0.5Fe2O4 Composites. J. Electron. Mater. 48, 6797–6806 (2019). https://doi.org/10.1007/s11664-019-07491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07491-1

Keywords

Navigation