Log in

Influence of Process Parameters and Formation of Highly c-Axis Oriented AlN Thin Films on Mo by Reactive Sputtering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

It is challenging to grow aluminum nitride (AlN) in c-axis orientation on a metal electrode, primarily due to lattice mismatch and the difference between the coefficients of thermal expansion. In this work, we investigate and optimize the effects of several process parameters such as plasma power, N2 flow concentration, quality of the bottom electrode, and oxygen content. The optimized deposition parameters are necessary for the growth of highly c-axis textured AlN thin film having a thickness of 300 nm on a Mo/SiO2/Si substrate. To this end, c-axis oriented AlN thin films were sputtered on a molybdenum (Mo) electrode at the low substrate temperature (300°C). The quality of the Mo electrode was optimized in terms of the surface roughness, interfacial energy, and full width at half maximum (FWHM) of x-ray diffraction (XRD) peak for facilitating the c-axis growth of the AIN film. Results indicate that the growth of AlN film in (002) orientation on the Mo electrode strongly depends on plasma power, the optimum value of which is found to be 300 W. Also, an extremely low FWHM of AlN (002) peak 0.62° is achieved at ∼ 38% N2 concentration. The oxygen content is also found to be an influential parameter, with a threshold value of 28% by atomic weight, beyond which amorphous growth of the AIN film is observed. The fabricated Mo-AlN-Mo structure has a dielectric constant of 8.89 and a capacitance value of 42 pF measured across the top electrode area of 400 × 400 μm2. The grown c-axis oriented AlN film can be used in applications such as the piezoelectric energy harvester (PEH) and the thin-film bulk acoustic resonator (FBAR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Wei-Kuo, T. Kok-Wan, K. Sin-Cha, and W. Menq-Jion, Sci. China Ser. G Phys. Mech. Astron. 52, 226 (2009).

    Article  Google Scholar 

  2. P.M. Mayrhofer, C. Rehlendt, M. Fischeneder, M. Kucera, E. Wistrela, A. Bittner, and U. Schmid, J. Microelectromech. Syst. 26, 102 (2017).

    Article  CAS  Google Scholar 

  3. J. Xu, X. Zhang, S.N. Ferando, K.T. Chai, and Y. Gu, Appl. Phys. Lett. 109, 032902 (2016).

    Article  Google Scholar 

  4. N.E. Christensen and I. Gorczyca, Phys. Rev. B 50, 4397 (1994).

    Article  CAS  Google Scholar 

  5. J. Jiang, B. Peng, W. Zhang, Y. Wang, L. Shu, and R. Wang, J. Vac. Sci. Technol. A 33, 41509 (2016).

    Article  Google Scholar 

  6. V. Vasanthipillay and K. Vijayalakshmi, J. Miner. Mater. Charact. Eng. 11, 724 (2012).

    Google Scholar 

  7. K.S. Stevens, A. Ohtani, M. Kinniburgh, R. Beresford, K.S. Stevens, A. Ohtani, and M. Kinniburgh, J. Mater. Res. 8, 2310 (1993).

    Article  Google Scholar 

  8. Q. Qian, B. Li, M. Hua, Z. Zhang, F. Lan, and Y. Xu, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  9. M.P. Cantilever, J. Microelectromech. Syst. 25, 108 (2016).

    Article  Google Scholar 

  10. H. **x, O. Yi, L. Zhigang, O. Wen, C. Dapeng, and Y. Tianchun, J. Semicond. 37, 07400 (2016).

    Google Scholar 

  11. S. Barth, H. Bartzsch, D. Gloess, P. Frach, T. Herzog, S. Walter, and H. Heuer, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1329 (2014).

    Article  Google Scholar 

  12. J. Zheng, L. Wang, D. Yang, J. Yu, X. Meng, Z. Hao, C. Sun, B. **ong, Y. Luo, Y. Han, J. Wang, H. Li, and M. Li, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  13. I. Katardjiev and V.M. Yantchev, IEEE Sens. J. 12, 2653 (2012).

    Article  Google Scholar 

  14. M.D. Williams, B.A. Griffin, T.N. Reagan, J.R. Underbrink, and M. Sheplak, J. Microelectromech. Syst. 21, 270 (2012).

    Article  CAS  Google Scholar 

  15. M. He, N. Cheng, P. Zhou, H. Okabe, J.B. Halpern, M. He, N. Cheng, P. Zhou, and H. Okabe, J. Vac. Sci. Technol. A 16, 2372 (1998).

    Article  CAS  Google Scholar 

  16. H. Wang, W. Wang, W. Yang, S. Zhou, Z. Lin, G. Li, W. Wang, W. Yang, S. Zhou, Z. Lin, and G. Li, J. Appl. Phys. 117, 185303 (2015).

    Article  Google Scholar 

  17. B.T. Tran, H. Hirayama, N. Maeda, M. Jo, and S. Toyoda, Sci. Rep. 6, 1 (2015).

    CAS  Google Scholar 

  18. J.D. Mackenzie, C.R. Abernathy, S.J. Pearton, V. Krishnamoorthy, S. Bharatan, and K.S.J.G. Wilson, Appl. Phys. Lett. 67, 253 (1995).

    Article  CAS  Google Scholar 

  19. M.A. Moreira, T. Törndahl, I. Katardjiev, and T. Kubart, J. Vac. Sci. Technol. A 33, 021518 (2015).

    Article  Google Scholar 

  20. T. Yokoyama, Y. Iwazaki, Y. Onda, T. Nishihara, Y. Sasajima, and M. Ueda, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1322 (2014).

    Article  Google Scholar 

  21. S.D. Ekpe, F.J. Jimenez, S.K. Dew, S.D. Ekpe, F.J. Jimenez, and S.K. Dew, J. Vac. Sci. Technol. A 28, 1210 (2010).

    Article  CAS  Google Scholar 

  22. J.C. Molleja, B.J. Gomez, J. Ferron, E. Gautron, J. Burgi, B. Abdullah, M.A. Djouadi, J. Fugeas, and P.Y. Jouan, Eur. Phys. J. Appl. Phys. 63, 20302 (2013).

    Article  Google Scholar 

  23. S.W. Chen, H.F. Lin, T.T. Sung, J.D. Wu, H.L. Kao, and J.S. Chen, Electron. Lett. 39, 1 (2003).

    Article  CAS  Google Scholar 

  24. C.P. Laksana, M. Chen, Y. Liang, A. Tzou, H. Kao, E.S. Jeng, J.S. Chen, H. Chen, and S. Jian, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1688 (2011).

    Article  Google Scholar 

  25. M. Akiyama, Y. Morofuji, K. Nishikubo, and T. Kamohara, Appl. Phys. Lett. 92, 43509 (2008).

    Article  Google Scholar 

  26. J. **ong, H. Gu, K. Hu, and M. Hu, Int. J. Miner. Metall. Mater. 17, 98 (2010).

    Article  CAS  Google Scholar 

  27. F. Martin and P.M. Dubois, J. Vac. Sci. Technol. A 24, 946 (2006).

    Article  CAS  Google Scholar 

  28. T. Kamohara, M. Akiyama, N. Ueno, K. Nonaka, and H. Tateyama, J. Gryst. Growth 276, 383 (2005).

    Article  Google Scholar 

  29. S. Lee, J.L.H. Yoon, S. Lee, and J. Lee, J. Vac. Sci. Technol. A 21, 1 (2003).

    Article  CAS  Google Scholar 

  30. T. Kamohara, M. Akiyama, N. Ueno, and K. Nonaka, Appl. Phys. Lett. 89, 071919 (2006).

    Article  Google Scholar 

  31. E. Iborra, M. Clement, and A. Sanz-herv, IEEE Trans. Ultrason. Feroelectr. Freq. Control 51, 352 (2004).

    Article  Google Scholar 

  32. T. Kamohara, M. Akiyama, N. Ueno, K. Nonaka, and N. Kuwano, Thin Solid Film 515, 4565 (2007).

    Article  CAS  Google Scholar 

  33. J. Bjurstr, G. Wingqvist, and I. Katardjiev, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 2095 (2006).

    Article  Google Scholar 

  34. T. Kamohara, M. Akiyama, N. Ueno, and M. Sakamoto, Appl. Phys. Lett. 89, 243507 (2006).

    Article  Google Scholar 

  35. J.X. Zhang, H. Cheng, Y.Z. Chen, A. Uddin, S. Yuan, S.J. Geng, and S. Zhang, Surf. Coat. Technol. 198, 68 (2005).

    Article  CAS  Google Scholar 

  36. T. Kamohara, M. Akiyama, and N. Kuwano, J. Gryst. Growth 310, 345 (2008).

    Article  CAS  Google Scholar 

  37. A.T. Tran, G. Pandraun, F.D. Tichelaar, M.D. Ngugen, H. Schellevis, and P.M. Sarro, Appl. Phys. Lett. 103, 221909 (2013).

    Article  Google Scholar 

  38. J. Jiang, B. Peng, W. Zhang, Y. Wang, L. Shu, and R. Wang, J. Vac. Sci. Technol. A 33, 041509 (2015).

    Article  Google Scholar 

  39. V.V. Felmetsger and P.N.L.J. Graham, J. Vac. Sci. Technol. A 29, 021014 (2011).

    Article  Google Scholar 

  40. S.M. Tanner and V.V. Felmetsger, J. Vac. Sci. Technol. A 28, 69 (2010).

    Article  CAS  Google Scholar 

  41. L. Stoberjens, P. Konrath, V.H. Patocka, M. Schneider, and U. Schmid, J. Vac. Sci. Technol. A 34, 21513 (2016).

    Article  Google Scholar 

  42. A.S. Science, H.S. Universit, and C. Mancha, Appl. Surf. Sci. 259, 59 (2012).

    Article  Google Scholar 

  43. F. Calle, G.F. Iriarte, and J.G. Rodrı, Mater. Res. Bull. 45, 1039 (2010).

    Article  Google Scholar 

  44. M. Dubois and P. Muralt, J. Appl. Phys. 89, 639 (2001).

    Google Scholar 

  45. X. Xu, H. Wu, C. Zhang, and Z. **, Thin Solid Films 388, 62 (2001).

    Article  CAS  Google Scholar 

  46. M.A. Auger, L. Vazquez, M. Jergel, O. Sanchez, and J.M. Albellaa, Surf. Coat. Technol. 180, 140 (2004).

    Article  Google Scholar 

  47. S. Mourya, J. Jaiswal, G. Malik, B. Kumar, and R. Chandra, J. Appl. Phys. 123, 023109 (2018).

    Article  Google Scholar 

  48. J.A. Thornton, J. Vac. Sci. Technol. A 12, 830 (1975).

    Article  CAS  Google Scholar 

  49. G. Malik, J. Jaiswal, S. Mourya, and R. Chandra, J. Appl. Phys. 122, 143105 (2017).

    Article  Google Scholar 

  50. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).

    Article  CAS  Google Scholar 

  51. D.K. Owens and R.C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969).

    Article  CAS  Google Scholar 

  52. S. Wu, J. Polym. Sci. Part C Polym. Symp. 34, 19 (1971).

    Article  Google Scholar 

  53. A. Ababneh, U. Schmid, J. Hernando, J.L. Sánchez-rojas, and H. Seidel, Mater. Sci. Eng. B 172, 253 (2010).

    Article  CAS  Google Scholar 

  54. B. Peng, D. Gong, W. Zhang, J. Jiang, L. Shu, and Y. Zhang, Materials 8, 686 (2016).

    Article  Google Scholar 

  55. L. Alexander and H.P. Klug, J. Appl. Phys. 21, 137 (1950).

    Article  CAS  Google Scholar 

  56. A. Khanna and D.G. Bhat, J. Vac. Sci. Technol. A 25, 557 (2007).

    Article  CAS  Google Scholar 

  57. J. Borges, F. Vaz, and L. Marques, Appl. Surf. Sci. 257, 1478 (2010).

    Article  CAS  Google Scholar 

  58. K. Sayed, E. Ramadan, and S. Evoy, PLoS ONE 10, 1 (2015).

    Google Scholar 

Download references

Acknowledgment

The authors thank the Institute Instrumentation Centre (IIC), IIT Roorkee, for their support in the characterization of deposited thin films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Singh Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S.S., Joglekar, M.M. & Manhas, S.K. Influence of Process Parameters and Formation of Highly c-Axis Oriented AlN Thin Films on Mo by Reactive Sputtering. J. Electron. Mater. 47, 7520–7530 (2018). https://doi.org/10.1007/s11664-018-6695-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6695-6

Keywords

Navigation