Log in

Slip, Crystal Orientation, and Damage Evolution During Thermal Cycling in High-Strain Wafer-Level Chip-Scale Packages

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Wafer-level chip-scale package samples with pre-cross-sectioned edge rows were thermally cycled to study microstructure evolution and damage development. Electron backscattered diffraction (EBSD) and high-energy x-ray diffraction were used to obtain Sn grain orientations and the average coefficient of thermal expansion normal to the board in every joint of the package for samples in the as-fabricated and thermally cycled conditions. The results indicated a near-random distribution of joint orientation. Optical, scanning electron microscopy, and EBSD methods were used to characterize microstructure changes in pre-cross-sectioned samples due to thermal cycling. Slip trace analysis and Orientation Imaging Microscopy™ (OIM) show that slip systems with high Schmid factors (estimated global shear stress based on the package neutral point) are responsible for the observed microstructure evolution during thermal cycling, which provides information about slip systems that are more easily activated. Two joints were analyzed in detail to evaluate slip activity at different stages of their thermal history. The first case showed that a solidification twin grain boundary misorientation deviated from the twin relationship due to slip activity during thermal cycling, which can influence damage development and the path of crack propagation. The second case showed a new grain orientation develo** due to gradual lattice rotation about the Sn [110] axis by a continuous recrystallization mechanism. This rotation was correlated with the operation of slip system \( \{ 110 )\langle \left. {001} \right] \). Small tin whiskers emerged from the initially polished chip interface and grew with increasing thermal cycles until a crack developed in the solder that relieved the stress. As the local stresses are not known experimentally, this analysis provides observations that can be compared with a crystal plasticity model simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Park, R. Dhakal, L. Lehman, and E. Cotts, Acta Mater. 55, 3253 (2007).

    Article  Google Scholar 

  2. M.A. Matin, W.P. Vellinga, and M.G.D. Geers, Mater. Sci. Eng. A 445–446, 73 (2007).

    Article  Google Scholar 

  3. T.T. Mattila, H. Xu, O. Ratia, and M. Paulasto-Kröckel, in IEEE 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, p. 581, 1–4 June 2010

  4. T.-K. Lee, K.-C. Liu, and T.R. Bieler, J. Electron. Mater. 38, 2685 (2009).

    Article  Google Scholar 

  5. S. Terashima, Y. Kariya, T. Hosoi, and M. Tanaka, J. Electron. Mater. 32, 1527 (2003).

    Article  Google Scholar 

  6. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, IEEE Trans Compon. Packag. Technol. 31, 370 (2008).

    Article  Google Scholar 

  7. S. Terashima, K. Takahama, M. Nozaki, and M. Tanaka, Mater. Trans. 45, 1383 (2004).

    Article  Google Scholar 

  8. T.R. Bieler, B. Zhou, L. Blair, A. Zamiri, P. Darbandi, F. Pourboghrat, T.K. Lee, and K.C. Liu, J. Electron. Mater. 41, 283 (2012).

    Article  Google Scholar 

  9. L. Yin, L. Wentlent, L. Yang, B. Arfaei, A. Oasaimeh, and P. Borgesen, J. Electron. Mater. 41, 241 (2012).

    Article  Google Scholar 

  10. D.A. Shnawah, M.F.M. Sabri, and I.A. Badruddin, Microelectron. Reliab. 52, 90 (2012).

    Article  Google Scholar 

  11. J. Hokka, T.T. Mattila, H. Xu, and M. Paulasto-Kröckel, J. Electron. Mater. 42, 1171 (2013).

    Article  Google Scholar 

  12. J. Hokka, T.T. Mattila, H. Xu, and M. Paulasto-Kröckel, J. Electron. Mater. 42, 963 (2013).

    Article  Google Scholar 

  13. A.U. Telang, T.R. Bieler, A. Zamiri, and F. Pourboghrat, Acta Mater. 55, 2265 (2007).

    Article  Google Scholar 

  14. H. Chen, J. Han, and M. Li, J. Electron. Mater. 40, 2470 (2011).

    Article  Google Scholar 

  15. H. Chen, J. Li, and M. Li, J. Alloys Compd. 540, 32 (2012).

    Article  Google Scholar 

  16. J.J. Sundelin, S.T. Nurmi, and T.K. Lepistö, Mater. Sci. Eng. A 474, 201 (2008).

    Article  Google Scholar 

  17. S. Terashima, Y. Kariya, and M. Tanaka, Mater. Trans. 45, 673 (2004).

    Article  Google Scholar 

  18. B. Zhou, T.R. Bieler, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 39, 2669 (2010).

    Article  Google Scholar 

  19. T.-K. Lee, B. Zhou, and T.R. Bieler, IEEE Trans. Compon. Packag. Techonol. 2, 496 (2012).

    Article  Google Scholar 

  20. B. Zhou, T.R. Bieler, T.-K. Lee, and W. Liu, J. Electron. Mater. 42, 319 (2013).

    Article  Google Scholar 

  21. S. Terashima, T. Kohno, A. Mizusawa, K. Arai, O. Okada, T. Wakabayashi, M. Tanaka, and K. Tatsumi, J. Electron. Mater. 38, 33 (2009).

    Article  Google Scholar 

  22. M.A. Matin, E.W.C. Coenen, W.P. Vellinga, and M.G.D. Geers, Scripta Mater. 53, 927 (2005).

    Article  Google Scholar 

  23. H. Chen, M. Mueller, T.T. Mattila, J. Li, X. Liu, K.-J. Wolter, and M. Paulasto-Kröckel, J. Mater. Res. 26, 2103 (2011).

    Article  Google Scholar 

  24. Q.K. Zhang and Z.F. Zhang, Acta Mater. 59, 6017 (2011).

    Article  Google Scholar 

  25. H. Chen, L. Wang, J. Han, M.Y. Li, Q.B. Wu, and J.M. Kim, J. Electron. Mater. 40, 2445 (2011).

    Article  Google Scholar 

  26. M. Fujiwara and T. Hirokawa, J. Jpn. Inst. Met. 51, 830 (1987).

    Google Scholar 

  27. B. Zhou, T.R. Bieler, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 38, 2702 (2009).

    Article  Google Scholar 

  28. B. Düzgün, A.E. Ekinci, I. Karaman, and N. Ucar, J. Mech. Behav. Mater. 10, 187 (1999).

    Article  Google Scholar 

  29. P. Darbandi (Ph.D. Dissertation, Michigan State University, 2013).

  30. Y. Kinoshita, H. Matsushima, and N. Ohno, Model. Simul. Mater. Sci. Eng. 20, 035003 (2012).

    Article  Google Scholar 

  31. Fable software: http://sourceforge.net/p/fable/wiki/fable%20workbench/. Accessed 1 Dec 2013.

  32. A.U. Telang, T.R. Bieler, and M.A. Crimp, Mater. Sci. Eng. A 421, 22 (2006).

    Article  Google Scholar 

  33. J. Obinata and E. Schmid, Z. Phys. 82, 224 (1933).

    Article  Google Scholar 

  34. R. Fiedler and A.R. Lang, J. Mater. Sci. 7, 531 (1972).

    Article  Google Scholar 

  35. R. Fiedler and I. Vagera, Phys. Stat. Solidi A 32, 419 (1975).

    Article  Google Scholar 

  36. S.N.G. Chu and J.C.M. Li, Mater. Sci. Eng. A 39, 1 (1979).

    Article  Google Scholar 

  37. R.S. Sidhu and N. Chawla, Metall. Mater. Trans. A 39, 799 (2008).

    Article  Google Scholar 

  38. M.A. Matin, W.P. Vellinga, and M.G.D. Geers, Mater. Sci. Eng. A 431, 166 (2006).

    Article  Google Scholar 

  39. A.U. Telang and T.R. Bieler, JOM 57, 44 (2005).

    Article  Google Scholar 

  40. K. Ojima and T. Hirokawa, Jpn. J. Appl. Phys. 22, 46 (1983).

    Article  Google Scholar 

  41. B. Düzgün and I. Aytaş, Jpn. J. Appl. Phys. 32, 3214 (1993).

    Article  Google Scholar 

  42. M. Nagasaka, Jpn. J. Appl. Phys. 28, 446 (1989).

    Article  Google Scholar 

  43. K. Honda, Jpn. J. Appl. Phys. 26, 637 (1987).

    Article  Google Scholar 

  44. J. Weertman and J.E. Breen, J. Appl. Phys. 27, 1189 (1956).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Bieler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Zhou, Q., Bieler, T.R. et al. Slip, Crystal Orientation, and Damage Evolution During Thermal Cycling in High-Strain Wafer-Level Chip-Scale Packages. J. Electron. Mater. 44, 895–908 (2015). https://doi.org/10.1007/s11664-014-3572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3572-9

Keywords

Navigation