Log in

Development of Skutterudite Thermoelectric Materials and Modules

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Multifilling with La, Ba, Ga, and Ti in p-type skutterudite and Yb, Ca, Al, Ga, and In in n-type skutterudite remarkably reduces their thermal conductivity, resulting in enhancement of their dimensionless figure of merit ZT to ZT = 0.75 for p-type (La,Ba,Ga,Ti)1(Fe,Co)4Sb12 and ZT = 1.0 for n-type (Yb,Ca,Al,Ga,In)0.7(Co,Fe)4Sb12. A thermoelectric module technology suitable for these skutterudites including diffusion barrier and electrode materials has been established. The diffusion barrier materials allow the electrode to coexist stably with the p/n skutterudites in the module’s working temperature range of room temperature to 600°C. Under conditions of hot/cold-side temperatures of 600°C/50°C, a skutterudite module with size of 50 mm × 50 mm × 7.6 mm exhibited generation performance of 32 W power output and 8% thermoelectric conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: Chemical Rubber, 1995), pp. 407–440.

    Google Scholar 

  2. T. Caillat, A. Borshchevsky, and J.P. Fleurial, J. Appl. Phys. 80, 4442 (1996).

    Article  CAS  Google Scholar 

  3. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  4. G.S. Nolas, M. Kaeser, R.T. Littleton IV, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  CAS  Google Scholar 

  5. G.A. Lamberton Jr., R.H. Tedstrom, T.M. Tritt, and G.S. Nolas, J. Appl. Phys. 97, 113715 (2005).

    Article  Google Scholar 

  6. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, S.Q. Bai, Y.Z. Pei, X.Y. Li, and T. Goto, Appl. Phys. Lett. 89, 092121 (2006).

    Article  Google Scholar 

  7. M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, and E.J. Müller, Appl. Phys. 95, 4852 (2004).

    CAS  Google Scholar 

  8. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006).

    Article  Google Scholar 

  9. J.S. Dyck, W. Chen, C. Uher, L.D. Chen, X.F. Tang, and T.J. Hirai, J. Appl. Phys. 91, 3698 (2002).

    Article  CAS  Google Scholar 

  10. Y.Z. Pei, L.D. Chen, S.Q. Bai, X.Y. Zhao, and X.Y. Li, Scripta Mater. 56, 621 (2007).

    Article  CAS  Google Scholar 

  11. X.F. Tang, Q.J. Zhang, L.D. Chen, T. Goto, and T. Hirai, J. Appl. Phys. 97, 093712 (2005).

    Article  Google Scholar 

  12. D. Berardan, E. Alleno, C. Godart, M. Puyet, B. Lenoir, R. Lackner, E. Bauer, L. Girard, and D. Ravot, J. Appl. Phys. 98, 033710 (2005).

    Article  Google Scholar 

  13. Q.M. Lu, J.X. Zhang, Y.Q. Liu, D.M. Liu, and M.L. Zhou, J. Appl. Phys. 98, 106107 (2005).

    Article  Google Scholar 

  14. X.F. Tang, H. Li, Q.J. Zhang, M. Niino, and T. Goto, J. Appl. Phys. 100, 123702 (2006).

    Article  Google Scholar 

  15. X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  CAS  Google Scholar 

  16. J.Q. Guo, H.Y. Geng, S. Ochi, H.K. Kim, H. Hyodo, and K. Kimura, Proceedings of 26th (2007) International Conference on Thermoelectrics, IEEE, ISBN 978-1-4244-2262-3, ISSN 1094-2734, p. 183.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Q. Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J.Q., Geng, H.Y., Ochi, T. et al. Development of Skutterudite Thermoelectric Materials and Modules. J. Electron. Mater. 41, 1036–1042 (2012). https://doi.org/10.1007/s11664-012-1958-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1958-0

Keywords

Navigation