Log in

Effects of SiC Nanodispersion on the Thermoelectric Properties of p-Type and n-Type Bi2Te3-Based Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polycrystalline p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 thermoelectric (TE) alloys containing a small amount (vol.% ≤5) of SiC nanoparticles were fabricated by mechanical alloying and spark plasma sintering. It was revealed that the effects of SiC addition on TE properties can be different between p-type and n-type Bi2Te3-based alloys. SiC addition slightly increased the power factor of the p-type materials by decreasing both the electrical resistivity (ρ) and Seebeck coefficient (α), but decreased the power factor of n-type materials by increasing both ρ and α. Regardless of the conductivity type, the thermal conductivity was reduced by dispersing SiC nanoparticles in the Bi2Te3-based alloy matrix. As a result, a small amount (0.1 vol.%) of SiC addition increased the maximum dimensionless figure of merit (ZT max) of the p-type Bi0.5Sb1.5Te3 alloys from 0.88 for the SiC-free sample to 0.97 at 323 K, though no improvement in TE performance was obtained in the case of n-type Bi2Te2.7Se0.3 alloys. Importantly, the SiC-dispersed alloys showed better mechanical properties, which can improve material machinability and device reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  2. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat, Int. Mater. Rev. 48, 45 (2003).

    Article  CAS  Google Scholar 

  3. J.-F. Li, S. Tanaka, T. Umeki, S. Sugimoto, M. Esashi, and R. Watanabe, Sen. Actuators A 108, 97 (2003).

    Article  Google Scholar 

  4. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  5. Y.Q. Cao, T.J. Zhu, X.B. Zhao, X.B. Zhang, and J.P. Tu, Appl. Phys. A 92, 321 (2008).

    Article  CAS  Google Scholar 

  6. Y.H. Zhang, G.Y. Xu, F. Han, Z. Wang, and C.C. Ge, J. Electron. Mater. doi:10.1007/s11664-010-1199-z (Online Publish).

  7. L. Zhao, B. Zhang, W. Liu, and J.F. Li, J. Appl. Phys. 105, 023704 (2009).

    Article  Google Scholar 

  8. W. **e, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, J. Appl. Phys. 105, 113713 (2009).

    Article  Google Scholar 

  9. M. Miyajima, K. Takagi, H. Okamura, G.G. Lee, Y. Noda, and R. Watanabe, Proceeding of the 15th International Conference on Thermoelectrics (Piscataway, NJ: IEEE, 1996), p. 18.

  10. J.S. Lee, T.S. Oh, and D.-B. Hyun, J. Mater. Sci. 35, 881 (2000).

    Article  CAS  Google Scholar 

  11. N. Gothard, G. Wilks, T.M. Tritt, and J.E. Spowart, J. Electron. Mater. doi:10.1007/s11664-009-1051-5 (Online Publish).

  12. J.-F. Li and J. Liu, Phys. Status Solidi A 203, 3768 (2006).

    Article  CAS  Google Scholar 

  13. L. Zhao, B. Zhang, J.-F. Li, M. Zhou, W. Liu, and J. Liu, J. Alloys Compd. 455, 259 (2008).

    Article  CAS  Google Scholar 

  14. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng. B 117, 334 (2005).

    Article  Google Scholar 

  15. L.-D. Zhao (Ph D dissertation, Bei**g: University of Science & Technology Bei**g, 2008), p. 78 (in Chinese).

  16. W. Wei, J. Li, H. Zhang, X. Cao, C. Tian, and J. Zhang, Scripta Mater. 57, 1081 (2007).

    Article  CAS  Google Scholar 

  17. R.H. Bube, Electronic Properties of Crystalline Solid: An Introduction to Fundamentals (New York: Academic, 1974).

    Google Scholar 

  18. W.E. Taylor, N.H. Odell, and H.Y. Fan, Phys. Rev. 88, 867 (1952).

    Article  CAS  Google Scholar 

  19. D.A. Broido and N. Mingo, Phys. Rev. B 74, 195325 (2006).

    Article  Google Scholar 

  20. Y.M. Lin and M.S. Dresselhaus, Phys. Rev. B 68, 075304 (2003).

    Article  Google Scholar 

  21. M. Imamuddin and A. Dupre, Phys. Status Solidi A 10, 415 (1972).

    Article  CAS  Google Scholar 

  22. J.R. Sootsman, J. He, V.P. Dravid, C.P. Li, C. Uher, and M.G. Kanatzidis, J. Appl. Phys. 105, 083718 (2009).

    Article  Google Scholar 

  23. Y. Gelbstein, G. Gotesman, Y. Lishzinker, Z. Dashevsky, and M.P. Dariel, Scripta Mater. 58, 251 (2008).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g-Feng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, DW., Li, JF., Chen, C. et al. Effects of SiC Nanodispersion on the Thermoelectric Properties of p-Type and n-Type Bi2Te3-Based Alloys. J. Electron. Mater. 40, 992–998 (2011). https://doi.org/10.1007/s11664-010-1476-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1476-x

Keywords

Navigation