Log in

Nonuniform and Negative Marker Displacements Induced by Current Crowding During Electromigration in Flip-Chip Sn-0.7Cu Solder Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A quantitative analysis of the nonuniform distribution of current density and nonuniform rate of electromigration has been carried out by measuring the movement of an array of diffusion markers. Tiny marker arrays were fabricated by focused ion beam on the polished surface of flip-chip solder joints near the anode to measure the electromigration rate. The marker velocity at the current-crowding region was found to be at least five times larger than at locations far from the region. Some of the markers in the low-current-density region possess negative velocities, indicating that backflow occurs during the electromigration. The backflow, in which the atomic flow is against the electron flow, is explained by a constant-volume model as well as the back-stress induced by electromigration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. K.N. Tu, J. Appl. Phys. 94, 5451 (2003).

    Article  CAS  ADS  Google Scholar 

  2. International Technology Roadmap for Semiconductors, Assembly and Packaging Section (Semiconductor Industry Association San Jose, CA, 2003), pp. 4–9.

  3. E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002).

    Article  CAS  ADS  Google Scholar 

  4. T.L. Shao, S.W. Liang, T.C. Lin, and C. Chen, J. Appl. Phys. 98, 044509 (2005).

    Article  ADS  Google Scholar 

  5. J.W. Nah, K.W. Paik, J.O. Suh, and K.N. Tu, J. Appl. Phys. 94, 7560 (2003).

    Article  CAS  ADS  Google Scholar 

  6. L.Y. Zhang, S.Q. Ou, J. Huang, K.N. Tu, S. Gee, and L.␣Nguyen, Appl. Phys. Lett. 88, 012106 (2006).

    Article  ADS  Google Scholar 

  7. Y.W. Chang, S.W. Liang, and C. Chen, Appl. Phys. Lett. 89, 032103 (2006).

    Article  ADS  Google Scholar 

  8. H.-Y. Hsiao, S.W. Liang, M.-F. Ku, C. Chen, and D.-J. Yao, J. Appl. Phys. 104, 033708 (2008).

    Article  ADS  Google Scholar 

  9. S.H. Chiu, T.L. Shao, C. Chen, D.J. Yao, and C.Y. Hsu, Appl. Phys. Lett. 88, 022110 (2006).

    Article  ADS  Google Scholar 

  10. H.C. Yu, S.H. Liu, and C. Chen, J. Appl. Phys. 98, 013540 (2005).

    Article  ADS  Google Scholar 

  11. H.B. Huntington and A.R. Grone, J. Phys. Chem. Solids 20, 76 (1961).

    Article  CAS  ADS  Google Scholar 

  12. I.A. Blech, Appl. Phys. Lett. 29, 131 (1976).

    Article  CAS  ADS  Google Scholar 

  13. I.A. Blech, Acta Mater. 46, 3717 (1998).

    Article  CAS  Google Scholar 

  14. L. Xu, J.H.L. Pang, and K.N. Tu, Appl. Phys. Lett. 89, 221909 (2006).

    Article  ADS  Google Scholar 

  15. K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability (New York: Springer, 2007), Chapter 6, p. 175.

  16. C.M. Tsai, Y.S. Lai, Y.L. Lin, C.W. Chang, and C.R. Kao, J.␣Electronic Mater. 35, 1781 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, S.W., Hsiao, HY., Chen, C. et al. Nonuniform and Negative Marker Displacements Induced by Current Crowding During Electromigration in Flip-Chip Sn-0.7Cu Solder Joints. J. Electron. Mater. 38, 2443–2448 (2009). https://doi.org/10.1007/s11664-009-0913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0913-1

Keywords

Navigation