Log in

Fabrication and characterization of two-color midwavelength/long wavelength HgCdTe infrared detectors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High-performance 20-µm unit-cell two-color detectors using an n-p+-n HgCdTe triple-layer heterojunction (TLHJ) device architecture grown by molecular beam epitaxy (MBE) on (211)-oriented CdZnTe substrates with midwavelength (MW) infrared and long wavelength (LW) infrared spectral bands have been demonstrated. Detectors with nominal MW and LW cut-off wavelengths of 5.5 µm and 10.5 µm, respectively, exhibit 78 K LW performance with >70 % quantum efficiency, reverse bias dark currents below 300 pA, and RA products (zero field of view, 150-mV bias) in excess of 1×103 Ωcm2. Temperature-dependent current-voltage (I–V) detector measurements show diffusion-limited LW dark current performance extending to temperatures below 70 K with good operating bias stability (150 mV ± 50 mV). These results reflect the successful implementation of MBE-grown TLHJ detector designs and the introduction of advanced photolithography techniques with inductively coupled plasma (ICP) etching to achieve high aspect ratio mesa delineation of individual detector elements with benefits to detector performance. These detector improvements complement the development of high operability large format 640×480 and 1280×720 two-color HgCdTe infrared focal plane arrays (FPAs) to support third generation forward looking infrared (FLIR) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Radford et al., SPIE 5783, 331 (2005).

    Article  CAS  Google Scholar 

  2. A. Rogalski, Infrared Phys. Technol. 41, 213 (2000).

    Article  CAS  Google Scholar 

  3. W. Cabanski, R. Brieter, R. Koch, K.-H. Mauk, W. Rode, J. Ziegler, H. Schneider, M. Walther, and R. Oelmaier, SPIE 4369, 547 (2001).

    Article  Google Scholar 

  4. J.A. Wilson et al., Proc. SPIE 2274, 117 (1994).

    Article  CAS  Google Scholar 

  5. E.P. Smith et al., Proc. SPIE 5209, 1 (2003).

    Article  CAS  Google Scholar 

  6. S.M. Johnson, D.R. Rhiger, J.P. Rosbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, J. Vac. Sci. Technol. B 10, 1499 (1992).

    Article  CAS  Google Scholar 

  7. A.A. Buell et al., J. Electron. Mater. 33, 662 (2004).

    Article  CAS  Google Scholar 

  8. E.P.G. Smith, J.K. Gleason, L.T. Pham, E.A. Patten, and M.S. Welkowsky, J. Electron. Mater. 32, 816 (2003).

    Article  CAS  Google Scholar 

  9. E.P.G. Smith et al., J. Electron. Mater. 34, 746 (2005).

    Article  CAS  Google Scholar 

  10. E.P.G. Smith et al., J. Electron. Mater. 32, 821 (2003).

    Article  CAS  Google Scholar 

  11. W.W. Flack, H. Nguyen, J. Buchanan, E. Capsuto, and A. Marks, SPIE 5376, 164 (2004).

    Google Scholar 

  12. J. Antoszewski, C.A. Musca, J.M. Dell, and L. Faraone, J. Electron. Mater. 32, 627 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, E.P.G., Patten, E.A., Goetz, P.M. et al. Fabrication and characterization of two-color midwavelength/long wavelength HgCdTe infrared detectors. J. Electron. Mater. 35, 1145–1152 (2006). https://doi.org/10.1007/s11664-006-0234-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0234-6

Key words

Navigation