Log in

Study of the pixel-pitch reduction for HgCdTe infrared dual-band detectors

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The third generation of HgCdTe infrared-detector focal-plane arrays (FPAs) should be able to detect simultaneously in two spectral bands. The feasibility of this type of dual-band detectors has already been shown in our laboratory with a pixel size of 50 µm in the 3–5-µm wavelength range. To improve the detector resolution, it is necessary to decrease the pixel pitch. Dry etching is a key process technology to fulfill this goal because of the high aspect-ratio structures needed (typically 10–15-µm deep and 2–5-µm wide trenches). In this paper, we present results of a parametric study on HgCdTe dry etching, as well as results obtained on detector arrays made with the dry-etching technique. The etching study has been done in a microwave plasma reactor with the aim of controlling the surface roughness, the etch rate, and the slope of the trench side. We show how these parameters are influenced by the reactive gas-mixture composition (based on CH4, H2, and Ar) and the substrate self-bias. We show how polymer film deposition can prevent etching from occurring but can improve anisotropy. We show some examples of results obtained when manufacturing the trenches that separate the pixels, kee** a high fill factor, and anisotropic etching. We also show results of the material surface characterizations done with scanning electron microscopy (SEM) and Hall effect measurements. These studies allow us to evaluate and compare the damages done to the HgCdTe surface with different etching conditions. Our best process allows us to make a light electrical damage, confined to less than a micron deep in the material. Using the dry-etching process, we have developed detector arrays fabricated with a pixel pitch as low as 30 µm. We finally present the results of the first electrical characterizations made on these arrays, showing promising results for the development of high-resolution dual-band detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Rajavel et al., J. Electron. Mater. 27, 747 (1998).

    Article  CAS  Google Scholar 

  2. W.E. Tennant et al., J. Electron. Mater. 30, 590 (2001).

    CAS  Google Scholar 

  3. M.B. Reine, A. Hairston, P. O’Dette, S.P. Tobin, F.T.J. Smith, B.L. Musicant, P. Mitra, and F.C. Case, Proc. SPIE 3379, 200 (1998).

    Article  CAS  Google Scholar 

  4. R.D. Rajavel et al., J. Electron. Mater. 27, 747 (1998).

    Article  CAS  Google Scholar 

  5. J.E. Spencer, J.H. Dinan, P.R. Boyd, H. Wilson, and S.E. Buttrill, J. Vac. Sci. Technol. A 7, 676 (1989).

    Article  CAS  Google Scholar 

  6. A. Semu, L. Montelius, P. Leech, D. Jamieson, and P. Silverberg, Appl. Phys. Lett. 59, 1752 (1991).

    Article  CAS  Google Scholar 

  7. J.L. Elkind and G.J. Orloff, J. Vac. Sci. Technol. A 10, 1106 (1992).

    Article  CAS  Google Scholar 

  8. C.R. Eddy, E.A. Dobisz, J.R. Meyer, and C.A. Hoffman, J. Vac. Sci. Technol. A 11, 1763 (1993).

    Article  CAS  Google Scholar 

  9. C.R. Eddy, D. Leonhardt, V.A. Shamamian, J.R. Meyer, C.C Hoffman, and J.E. Butler, J. Electron. Mater. 28, 347 (1999).

    Article  CAS  Google Scholar 

  10. R.C. Keller, M. Seelmann-Eggebert, and H.J. Richter, J. Electron. Mater. 24, 1155 (1995).

    CAS  Google Scholar 

  11. R.C. Keller, M. Seelmann-Eggebert, and H.J. Richter, J. Electron. Mater. 2, 1270 (1996).

    Google Scholar 

  12. A.J. Stoltz, J.D. Benson, P.R. Boyd, M. Martinka, J.B. Varesi, A.W. Kaleczyc, E.P.G. Smith, S.M. Johnson, W.A. Radford, and J.H. Dinan, J. Electron. Mater. 32, 692 (2003).

    Article  CAS  Google Scholar 

  13. E.P.G. Smith, J.K. Gleason, L.T. Pham, E.A. Patten, and M.S. Welkowsky, J. Electron. Mater. 32, 813 (2003).

    Google Scholar 

  14. J. Baylet, J.P. Zanatta, D. Chance, O. Gravrand, F. Rothan, E. De Borniol, P. Castelein, J.P. Chamonal, M. Ravetto, and G. Destefanis, Proc. SPIE 4650, 128 (2003).

    Article  Google Scholar 

  15. J.P. Zanatta, P. Ferret, R. Loyer, G. Petroz, S. Cremer, J.P. Chamonal, P. Bouchut, A. Million, and G. Destefanis, Proc. SPIE 4130, 441 (2000).

    Article  CAS  Google Scholar 

  16. E. Belas, Semicond. Sci. Technol. 8, 1695 (1993).

    Article  CAS  Google Scholar 

  17. E. Belas, J. Franc, A. Toth, P. Moravec, R. Grill, H. Sitter, and P. Höschl, Semicond. Sci. Technol. 11, 1116 (1996).

    Article  CAS  Google Scholar 

  18. M.A. Kinch, Proc. SPIE 4369, 566 (2001).

    Article  Google Scholar 

  19. M.H. Rais, C.A. Musca, J.M. Dell, J. Antoszewski, B.D. Nener, and L. Faraone, Microelectron. J. 31, 545 (2000).

    Article  CAS  Google Scholar 

  20. J. Antoszewski, C.A. Musca, J.M. Dell, and L. Faraone, J. Electron. Mater. 32, 627 (2003).

    Article  CAS  Google Scholar 

  21. G.L. Destefanis, J. Cryst. Growth 86, 700 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baylet, J., Gravrand, O., Laffosse, E. et al. Study of the pixel-pitch reduction for HgCdTe infrared dual-band detectors. J. Electron. Mater. 33, 690–700 (2004). https://doi.org/10.1007/s11664-004-0068-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0068-z

Key words

Navigation