Log in

HgCdTe focal plane arrays for dual-color mid- and long-wavelength infrared detection

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Raytheon Vision Systems (RVS, Goleta, CA) in collaboration with HRL Laboratories (Malibu, CA) is contributing to the maturation and manufacturing readiness of third-generation, dual-color, HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256×256 30-µm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long wavelength infrared (LWIR) spectral regions. The FPAs configured for MWIR/MWIR, MWIR/LWIR, and LWIR/LWIR detection are used for target identification, signature recognition, and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all dual-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art, single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single-mesa, single-indium bump, and sequential-mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Shen, Microelectron. J. 25, 713 (1994).

    Article  CAS  Google Scholar 

  2. A. Rogalski, Infrared Phys. Technol. 41, 213 (2000).

    Article  CAS  Google Scholar 

  3. A. Rogalski, Appl. Phys. Lett. 93, 4355 (2003).

    CAS  Google Scholar 

  4. W. Cabanski, R. Brieter, R. Koch, K.-H. Mauk, W. Rode, J. Ziegler, H. Schneider, M. Walther, and R. Oelmaier, Proc. SPIE 4369, 547 (2001).

    Article  Google Scholar 

  5. P. Ferret, J.P. Zanatta, R. Hamelin, S. Cremer, A. Million, M. Wolny, and G. Destefanis, J. Electron. Mater. 29, 641 (2000).

    CAS  Google Scholar 

  6. T. Tung, L.V. DeArmond, R.F. Herald, P.E. Herning, M.H. Kalisher, D.A. Olson, R.F. Risser, A.P. Stevens, and S.J. Tighe, Proc. SPIE 1735, 109 (1992).

    Article  CAS  Google Scholar 

  7. J.B. Varesi, R.E. Bornfreund, A.C. Childs, W.A. Radford, K.D. Maranowski, J.M. Peterson, S.M. Johnson, L.M. Giegerich, T.J. de Lyon, and J.E. Jensen, J. Electron. Mater. 30, 566 (2001).

    CAS  Google Scholar 

  8. R.D. Rajavel, D.M. Jamba, O.K. Wu, J.E. Jensen, J.A. Wilson, E.A. Patten, K. Kosai, P. Goetz, G.R. Chapman, and W.A. Radford, J. Cryst. Growth 157/176, 653 (1997).

    Article  Google Scholar 

  9. R.D. Rajavel, O.K. Wu, J.E. Jensen, C.A. Cockrum, G.M. Venzor, E.A. Patten, P.M. Goetz, D. Leonard, and S.M. Johnson, Mater. Res. Soc. Symp. Proc. 421, 335 (1996).

    CAS  Google Scholar 

  10. S.M. Johnson et al., J. Electron. Mater. 29, 680 (2000).

    Article  CAS  Google Scholar 

  11. L.A. Almeida, M. Thomas, W. Larsen, K. Spariosu, D.D. Edwall, J.D. Benson, W. Mason, A.J. Stoltz, and J.H. Dinan, J. Electron. Mater. 31, 669 (2002).

    CAS  Google Scholar 

  12. S.M. Johnson, D.R. Rhiger, J.P. Rosbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, J. Vac. Sci. Technol. B 10, 1499 (1992).

    Article  CAS  Google Scholar 

  13. R.C. Keller, M. Seelmann-Eggebert, and H.J. Richter, J. Electron. Mater. 25, 1270 (1996).

    CAS  Google Scholar 

  14. R.C. Keller, M. Seelmann-Eggebert, and H.J. Richter, J. Electron. Mater. 24, 1155 (1995).

    CAS  Google Scholar 

  15. E.P.G. Smith, J.K. Gleason, L.T. Pham, E.A. Patten, and M.S. Welkowsky, J. Electron. Mater. 32, 816 (2003).

    Article  CAS  Google Scholar 

  16. R.J. Shul, G.B. McClellan, R.D. Briggs, D.J. Rieger, S.J. Pearton, C.R. Abernathy, J.W. Lee, C. Constantine, and C. Barratt, J. Vac. Sci. Technol. A 15, 633 (1997).

    Article  CAS  Google Scholar 

  17. L. Zhang, L.F. Lester, R.J. Shul, C.G. Willison, and R.P. Leavitt, J. Vac. Sci. Technol. B 17, 965 (1999).

    Article  CAS  Google Scholar 

  18. E.P.G. Smith et al., J. Electron. Mater. 32, 821 (2003).

    Article  CAS  Google Scholar 

  19. J.A. Wilson et al., Proc. SPIE 2274, 117 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, E.P.G., Pham, L.T., Venzor, G.M. et al. HgCdTe focal plane arrays for dual-color mid- and long-wavelength infrared detection. J. Electron. Mater. 33, 509–516 (2004). https://doi.org/10.1007/s11664-004-0039-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0039-4

Key words

Navigation