Log in

Effect of Acid-Soluble Aluminum on the Evolution of Non-metallic Inclusions in Spring Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The content of acidic soluble aluminum in molten steel ([Al]s) is of significance to the control of total oxygen (TO), the formation of non-metallic inclusions, and the improvement of the surface quality of billets. Industrial trials and thermodynamic calculations were performed to study the effects of [Al]s content on the TO and the evolution of non-metallic inclusions in 60Si2Mn-Cr spring steel that was deoxidized by Si-Mn ((low aluminum process (LAP)) and Si-Mn-Al (high aluminum process (HAP)). The results show that the [Al]s contents in billets are within 0.0060 to 0.0069 mass pct in the LAP and 0.016 to 0.055 mass pct in the HAP. The TO content at each station of the LAP is higher than that in the HAP; the inclusions of billets were mainly of the CaO-Al2O3-SiO2 type in the former, and of the CaO-Al2O3-MgO and CaS-Al2O3-MgO types in the latter. A tendency is found that the higher the [Al]s, the easier it is to deviate from the low melting point region of the inclusion distribution and the larger the size of the inclusions. The relationships between [Al]s and the melting point of the oxide inclusions and the Al2O3 content in the oxide inclusions are also discussed in terms of experiment and calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Wasai, K. Mukai, and A. Miyanaga: ISIJ Int., 2002, vol. 42, pp. 459–66.

    Article  Google Scholar 

  2. R. Takata, J. Yang, and M. Kuwabara: ISIJ Int., 2007, vol. 47, pp. 1379–86.

    Article  Google Scholar 

  3. X. Cai, Y. Bao, and L. Lin: Steel Res. Int., 2016, vol. 87, pp. 1168–78.

    Article  Google Scholar 

  4. C. Bertrand, J. Molinero, and S. Landa: Ironmak. Steelmak., 2003, vol. 30, pp. 165–9.

    Article  Google Scholar 

  5. H. Suito and R. Inoue: ISIJ Int., 1996, vol. 36, pp. 528–36.

    Article  Google Scholar 

  6. K. Wang, M. Jiang, and X. Wang: Metall. Mater. Trans. B, 2015, vol. 47, pp. 1–9.

    Google Scholar 

  7. H. Itoh, M. Hino, S. Banya: Metall. Mater. Trans. B, 1997, vol. 28, pp. 953–6.

    Article  Google Scholar 

  8. A. Hayashi, T. Uenishi, H. Kandori, T. Miki, and M. Hino: ISIJ Int., 2008, vol. 48, pp. 1533–41.

    Article  Google Scholar 

  9. Y. Kang, M. Thunman, D. Sichen, T. Morohoshi, K. Mizukami, and K. Morita: ISIJ Int., 2009, vol. 49, pp. 1483–9.

    Article  Google Scholar 

  10. K. Sasai and Y. Mizukami: ISIJ Int., 2000, vol. 40, pp. 40–7.

    Article  Google Scholar 

  11. P. Min-Kyu, J. Jung-Mock, K. Hee-Jun, and P. Jong-**: ISIJ Int., 2013, vol. 53, pp. 535–7.

    Article  Google Scholar 

  12. K. Tomioka, K. Ogawa, and H. Matsumoto: ISIJ Int., 1996, vol. 36, pp. S101–4.

    Article  Google Scholar 

  13. S. Kobayashi: ISIJ Int., 1999, vol. 39, pp. 664–70.

    Article  Google Scholar 

  14. L. Zhang, J. Aoki, and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37, pp. 361–79.

    Article  Google Scholar 

  15. E. Roos, A. Karasev, and P.G. Jönsson: Steel Res. Int., 2014, vol. 85, pp. 1410–7.

    Article  Google Scholar 

  16. Z. Wu, W. Zheng, G. Li, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1226–41.

    Article  Google Scholar 

  17. G. Yang and X. Wang: ISIJ Int., 2015, vol. 55, pp. 126–33.

    Article  Google Scholar 

  18. W.V. Bielefeldt and A.C.F. Vilela: Steel Res. Int., 2015, vol. 86, pp. 375–85.

    Article  Google Scholar 

  19. S. Chen, M. Jiang, X. He, and X. Wang: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 490–8.

    Article  Google Scholar 

  20. J.S. Park and J.H. Park: Metall. Mater. Trans. B, 2014, vol. 45, pp. 953–60.

    Article  Google Scholar 

  21. S. Nurmi, S. Louhenkilpi, and L. Holappa: Steel Res. Int., 2013, vol. 84, pp. 323–7.

    Article  Google Scholar 

  22. D. Wang, M. Jiang, H. Matsuura, and F. Tsukihashi: Steel Res. Int., 2014, 85, pp. 16–25.

    Article  Google Scholar 

  23. Y.B. Kang and H.G. Lee: ISIJ Int., 2004, vol. 44, pp. 1006–15.

    Article  Google Scholar 

  24. H. Ohta and H. Suito: ISIJ Int., 1996, vol. 36, pp. 983–90.

    Article  Google Scholar 

  25. Y. Hu and W. Chen: Ironmak. Steelmak., 2016, vol. 43, pp. 340–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Tang.

Additional information

Manuscript submitted September 11, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tang, H., Wu, T. et al. Effect of Acid-Soluble Aluminum on the Evolution of Non-metallic Inclusions in Spring Steel. Metall Mater Trans B 48, 943–955 (2017). https://doi.org/10.1007/s11663-017-0922-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0922-z

Keywords

Navigation