Log in

A physically based model for microstructure development in a macroscopic heat-affected zone: Grain growth and recrystallization

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The microstructure in new alloys is increasingly being engineered toward specific properties. Welding, however, alters or destroys this carefully constructed microstructure in the weld and the surrounding region, known as the heat-affected zone (HAZ). Modeling the influence of the entire thermal cycle of the welding process with a physically based model for the material can provide new understanding of the microstructure evolution due to the welding process. In this work, the phase-field method employed uses a physically based model to describe the motion of grain boundaries during welding. Via a unique dual-mesh strategy, calculation times for a macroscopic HAZ are drastically reduced while still maintaining sufficient detail for microstructure characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed. PWS Publishing Company, Boston, 1994.

    Google Scholar 

  2. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 1996.

    Google Scholar 

  3. C.E.R. Torres, F.H. Sanchez, A. Gonzalez, F. Actis, and R. Herrera: Metall. Mater. Trans. A, 2002, vol. 33 (1), pp. 25–31.

    Article  Google Scholar 

  4. K. Marthinsen and N. Ryum: Acta Mater., 1997, vol. 45 (3), pp. 1127–36.

    Article  CAS  Google Scholar 

  5. S. Mishra and T. DebRoy: Acta Mater., 2004, vol. 52 (5), pp. 1183–92.

    Article  CAS  Google Scholar 

  6. G. Gottstein and L. Shvindlerman: Grain Boundary Migration in Metals, CRC Press, Boca Raton, FL, 1999.

    Google Scholar 

  7. V. Marx, F.R. Reher, and G. Gottstein: Acta Mater., 1999, vol. 47 (4), pp. 1219–30.

    Article  CAS  Google Scholar 

  8. L. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, MA, 1975.

    Google Scholar 

  9. E.A. Holm, M.A. Miodownik, and A.D. Rollett: Acta Mater., 2003, vol. 51 (9), pp. 2701–16.

    Article  CAS  Google Scholar 

  10. J. Douthett: in ASM Handbook, Davis, J., ed., vol. 4. ASM International, 1998.

  11. G. Gottstein, H. Steffen, W. Hemminger, G. Hoschek, K. Broxtermann, H.G. Grewe, and E. Lang: Scripta Metall., 1975, vol. 9 (7), pp. 791–96.

    Article  CAS  Google Scholar 

  12. E.E. Underwood: in ASM Handbook, vol. 9. ASM Materials Park, 1985, pp. 123–24.

  13. R. Thiessen and I.M. Richardson: in Numerical Analysis of Weldability, 7, H. Cerjak, H.K.D.H. Bhadeshia, eds., Graz, Austria, TU Graz Publishing, 2005, pp. 151–78.

    Google Scholar 

  14. R.G. Thiessen and I.M. Richardson: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 293–300.

    CAS  Google Scholar 

  15. J. Goldak, A. Chakravarti, and M. Bibby: Metall. Trans. B, 1984, vol. 15 (2), pp. 299–305.

    Google Scholar 

  16. Manual Technical Report, MSC Software Corporation, 2003.

  17. E.M. van der A: M.Sc. Thesis, TU Delft, 2002.

  18. I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, and J.L.L. Rezende: Physica D, 1996, vol. 94 (3), pp. 135–47.

    Article  Google Scholar 

  19. A. Heiming, K.H. Steinmetz, G. Vogl, and Y. Yoshida: J. Phys. F, 1988, vol. 18 (7), pp. 1491–503.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiessen, R.G., Richardson, I.M. A physically based model for microstructure development in a macroscopic heat-affected zone: Grain growth and recrystallization. Metall Mater Trans B 37, 655–663 (2006). https://doi.org/10.1007/s11663-006-0050-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-006-0050-7

Keywords

Navigation