Log in

Simulation of flow control in the meniscus of a continuous casting mold with opposing alternating current magnetic fields

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A numerical simulation was performed for a novel electromagnetic stirring system that employs two rotating magnetic fields. The system controls stirring flow in the meniscus region of a continuous casting mold independently from the stirring induced within the remaining volume of the mold by a main electromagnetic stirring (M-EMS) system. This control is achieved by applying to the meniscus region an alternating current-stirring modifier (AC-SM) whose direction of rotation is opposite to that of the main magnetic field produced by the M-EMS. The model computes values and spatial distributions of electromagnetic parameters and fluid flow in stirred pools of mercury in cylindrical and square pools. Also predicted are the relationships between electromagnetics and fluid flows pertinent to a dynamic equilibrium of the opposing stirring swirls in the meniscus region. Results of the numerical simulation compared well with the measurements obtained from experiments with mercury pools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

magnetic flux density (Tesla)

C :

(=9.0) constant that characterizes the roughness of a boundary surface

c μ :

(=0.09) constant

c MHD :

(=0.1) MHD constant in k-ε model

c :

(=1.44) constant of turbulence production

c :

(=1.92) constant of turbulence dissipation

E :

electric field strength (V/m)

F :

electromagnetic body force (Newton)

f :

frequency (s−1)

G k :

production or suppression of turbulence kinetic energy due to buoyancy (J/s m3)

g :

acceleration of gravity (m/s2)

H :

magnetic field strength (A/m)

h :

depth of meniscus concavity (m)

J :

current density (A/m2)

K :

(=0.42) von Karman constant

k :

turbulence kinetic energy (m2/s2)

P k :

mean production in k and ε equations (J/s m3)

p :

pressure (Newton/m2)

t :

Time (s)

U :

flow velocity (m/s)

u* :

friction velocity (m/s)

x i :

coordinate system (m)

y l :

thickness of laminar sublayer (m)

y p :

distance of node P from the wall (m)

σ :

fluid electric conductivity (S/m)

σ h :

(=0.9) turbulence Prandtl number for conductivity

σ k :

(=1.0) turbulence Prandtl number for k

ε MHD :

(=1.3) turbulence Prandtl number for ε

ρ :

density (kg/m3)

ε :

dissipation of turbulence kinetic energy (W/kg)

ε ijk :

rotation index

μ λ :

laminar viscosity (kg/m s)

μ t :

turbulent viscosity (kg/m s)

μ eff :

effective viscosity (kg/m s)

c :

critical state

i :

free or dummy index

j :

free or dummy index

λ :

free or dummy index, Laminar

t :

turbulence

References

  1. T. Toh, H. Hasegawa, and H. Harada: Iron Steel Inst. Jpn. Int., 2001, vol. 41 (10), pp. 1245–51.

    CAS  Google Scholar 

  2. S.O.E. Ogbogu: Modeling, Measurement Control B, 2000, vol. 69 (5–6), pp. 1–17.

    Google Scholar 

  3. O. Pesteanu: Iron Steel Inst. Jpn. Int., 2002, vol. 42 (1), pp. 118–19.

    CAS  Google Scholar 

  4. T.T. Natajaran and N. El-Kaddah: Iron Steel Inst. Jpn. Int., 1998, vol. 38 (7), pp. 680–89.

    Google Scholar 

  5. I. Miyoshino, E. Takeuchi, and H. Yano: Iron Steel Inst. Jpn. Int., 1989, vol. 29 (12), pp. 1040–47.

    CAS  Google Scholar 

  6. Z.D. Qian, Y.L. Wu, B.W. Li, and J.C. He: Iron Steel Inst. Jpn. Int., 2002, vol. 42 (11), pp. 1259–65.

    CAS  Google Scholar 

  7. T. Toh, E. Takeuchi, M. Hojo, H. Kawai, and S. Matsumura: Iron Steel Inst. Jpn. Int., 1997, vol. 37 (11), pp. 1112–19.

    CAS  Google Scholar 

  8. L. Trindade, A. Vilela, A. Filho, M. Vilhena, and R. Soares: IEEE Trans. Magn., 2002, vol. 38 (6), pp. 3658–60.

    Article  Google Scholar 

  9. K. Fujisaki: IEEE Trans. Industry Applications, 2001, vol. 37 (4), pp. 1098–1104.

    Article  Google Scholar 

  10. H. Yamane, Y. Ohtani, J. Fukuda, T. Kawase, J. Nakashima, and A. Kiyose: Proc. Steelmakers Conf., 1997, vol. 80, pp. 159–64.

    CAS  Google Scholar 

  11. J.K. Partinen, N. Saluja, J. Szekely, and J. Kirtley: Iron Steel Inst. Jpn. Int., 1994, vol. 34 (9), pp. 707–14.

    CAS  Google Scholar 

  12. L. Beitelman and J.A. Mulcahy: Int. Symp. on Electromagnetic Processing of Materials, EPM ’94, Nagoya, Japan, 1994, The Iron and Steel Institute of Japan, pp. 235–41.

  13. H.M. Domanus, R.C. Schmitt, and S. Ahuja: Argonne National Laboratory Report No. ANL-93/14, July 1993.

  14. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, John Wiley & Sons, Inc., New York, NY, 1966.

    Google Scholar 

  15. G. Tallback, S. Kollberg, and H. Hackl: 17th Advanced Technology Symp., Phoenix, AZ, Feb. 13–16, 1994.

  16. F.C. Chang, M. Bottoni, and W.T. Sha: Argonne National Laboratory Report No. ANL/ATHRP-44, Argonne National Laboratory, Argonne, IL, Jan. 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, FC., Hull, J.R. & Beitelman, L. Simulation of flow control in the meniscus of a continuous casting mold with opposing alternating current magnetic fields. Metall Mater Trans B 35, 1129–1137 (2004). https://doi.org/10.1007/s11663-004-0069-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0069-6

Keywords

Navigation