Log in

Effects of Cerium on Non-metallic Inclusions and Rolling Contact Fatigue Life of a High-Carbon Chromium Bearing Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of cerium addition on the rolling contact fatigue (RCF) life of a high-carbon chromium bearing steel was studied using laboratory experiments. The RCF life (L10 and L50) of bearing steels with and without cerium was tested using a thrust type rolling contact fatigue tester, and the result showed that under the experimental condition of the current study, the L10 and L50 of cerium-containing bearing steel were 1.2 times and 2 times that of the cerium-free bearing steel. The composition, size, distribution, and number density of inclusions in the steel were analyzed using scanning electron microscopy (SEM) with the function of automatic inclusion detection. The addition of trace cerium in bearing steel mainly modified initial large CaO-MgO-Al2O3 complex inclusions into small CeAlO3 and Ce2O2S inclusions. The statistics of extreme values (SEV) method was used to estimate the characteristic size of different kinds of maximum inclusions in the sample to compare with the RCF life which was measured by experiments. As a result, the RCF life of the bearing steel decreased with the increase of characteristic sizes of the maximum inclusion (CMSI), and oxide inclusions were determined as the most detrimental. In addition, the stress distribution of the RCF sample was analyzed using finite element simulation, and combined with the observation of the fatigue cracks initiated from inclusions, the range of dangerous areas under experimental Hertz stress was proposed. The distribution of inclusions on the cross-section and the number density of inclusions in the sample showed that the effect of the number density of inclusions on the rolling contact fatigue life was much less than the inclusion size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T. Lund and J. Åkesson: ASTM International, 1988, pp. 308–30.

  2. J. Monnot, B. Heritier and J.Y. Cogne: ASTM International, 1988, pp. 149–65.

  3. G. Lundberg and A. Palmgren: Acta Polytech. Scand., 1947, vol. 1, pp. 1–52.

    Google Scholar 

  4. P. Becker: Met. Technol., 1981, vol. 8, pp. 234–43.

    Article  CAS  Google Scholar 

  5. W. Duckworth and E. Ineson: Clean steel, 1963, vol. 77, pp. 87–103.

    Google Scholar 

  6. Y. Murakami: Metal Fatigue, 1993, vol. 28, pp. 13–23.

    Google Scholar 

  7. T. Uesugi: Tetsu-to-Hagane, 1988, vol. 74, pp. 1889–94.

    Article  Google Scholar 

  8. J. Zhang, S. Li, Z. Yang, G. Li, W. Hui, and Y. Weng: Int. J. Fatigue, 2007, vol. 29, pp. 765–71.

    Article  CAS  Google Scholar 

  9. A. Medvedeva, J. Bergström and S. Gunnarsson: Steel Res. Int., 2008, vol. 79, pp. 376–81.

  10. Y. Liu, Z. Yang, Y. Li, S. Chen, S. Li, W. Hui, and Y. Weng: Mater. Sci. Eng. A, 2009, vol. 517, pp. 180–84.

    Article  Google Scholar 

  11. T. Lund, J. Beswick, and S.W. Dean: J. ASTM Int., 2010, vol. 7, p. 102559.

    Article  Google Scholar 

  12. Z. Yang, S. Li, Y. Li, Y. Liu, W. Hui, and Y. Weng: Mater. Sci. Eng. A, 2010, vol. 527, pp. 559–64.

    Article  Google Scholar 

  13. K. Hashimoto, K. Hiraoka, K. Kida, and E. CostaSantos: Mater. Sci. Technol., 2012, vol. 28, pp. 39–43.

    Article  CAS  Google Scholar 

  14. C. Yang, Y. Luan, D. Li, and Y. Li: Int. J. Fatigue, 2018, vol. 116, pp. 396–408.

    Article  CAS  Google Scholar 

  15. C. Gu, J. Lian, Y. Bao, and S. Münstermann: Mater. Sci. Eng., A, 2019, vol. 751, pp. 133–41.

    Article  CAS  Google Scholar 

  16. D. Spriestersbach, P. Grad, and E. Kerscher: Int. J. Fatigue, 2014, vol. 64, pp. 114–20.

    Article  CAS  Google Scholar 

  17. U. Karr, R. Schuller, M. Fitzka, B. Schönbauer, D. Tran, B. Pennings, and H. Mayer: J. Mater. Sci., 2017, vol. 52, pp. 5954–67.

    Article  CAS  Google Scholar 

  18. K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos: Mater. Des., 2011, vol. 32, pp. 1605–11.

    Article  CAS  Google Scholar 

  19. Y. Furuya, H. Hirukawa, T. Kimura, and M. Hayaishi: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1722–30.

    Article  CAS  Google Scholar 

  20. H. Li, Y.-C. Yu, X. Ren, S.-H. Zhang, and S.-B. Wang: J. Iron. Steel Res. Int., 2017, vol. 24, pp. 925–34.

    Article  Google Scholar 

  21. Q. Ren and L. Zhang: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 589–600.

    Article  Google Scholar 

  22. Z. Shaohua, Y. Yanchong, W. Shebin, and L. Hao: J. Rare Earths, 2017, vol. 35, pp. 518–24.

    Article  Google Scholar 

  23. C. Yang, Y. Luan, D. Li, and Y. Li: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1298–1308.

    Article  CAS  Google Scholar 

  24. C. Yang, Y. Luan, D. Li, and Y. Li: Int. J. Fatigue, 2020, vol. 131, p. 105263.

    Article  CAS  Google Scholar 

  25. Z. Cao, Z. Shi, F. Yu, G. Wu, W. Cao, and Y. Weng: Int. J. Fatigue, 2019, vol. 126, pp. 1–5.

    Article  CAS  Google Scholar 

  26. H. Fu, J.J. Rydel, A.M. Gola, F. Yu, K. Geng, C. Lau, H. Luo, and P.E. Rivera-Díaz-del-Castillo: Int. J. Fatigue, 2019, vol. 129, pp. 48–79.

    Article  Google Scholar 

  27. S.M. Moghaddam, F. Sadeghi, K. Paulson, N. Weinzapfel, M. Correns, V. Bakolas, and M. Dinkel: Int. J. Fatigue, 2015, vol. 80, pp. 203–15.

    Article  Google Scholar 

  28. W. Ma, Y. Bao, M. Wang, and L. Zhao: ISIJ Int., 2014, vol. 54, pp. 536–42.

    Article  CAS  Google Scholar 

  29. G. Cheng, L. Zhang, and Y. Ren: Ironmak. Steelmak., 2020, vol. 47, pp. 1217–25.

    Article  CAS  Google Scholar 

  30. X. Wang, G. Li, Y. Liu, F. Wang, and Q. Wang: ISIJ Int., 2021, vol. 61, pp. 1850–59.

    Article  CAS  Google Scholar 

  31. X. Liu, J. Yang, F. Zhang, X. Fu, H. Li, and C. Yang: J. Rare Earths, 2021, vol. 39, pp. 477–86.

    Article  CAS  Google Scholar 

  32. W. Meng and G. Eesley: Thin Solid Films, 1995, vol. 271, pp. 108–16.

    Article  CAS  Google Scholar 

  33. S. Davis and G. Gutiérrez: J. Phys. Condens. Matter, 2011, vol. 23, p. 495401.

    Article  Google Scholar 

  34. Y. Liu, Y. Jiang, J. Feng, and R. Zhou: Physica B, 2013, vol. 419, pp. 45–50.

    Article  CAS  Google Scholar 

  35. J. Feng, B. **ao, J. Chen, Y. Du, J. Yu, and R. Zhou: Mater. Des., 2011, vol. 32, pp. 3231–39.

    Article  CAS  Google Scholar 

  36. S. Pugh: Lond. Edinb. Dublin Philos. Mag. J. Sci., 1954, vol. 45, pp. 823–43.

    Article  CAS  Google Scholar 

  37. Y. Murakami: Int. J. Fatigue, 1994, vol. 3, pp. 345–51.

    Google Scholar 

  38. E.J. Gumbel: Statistics of Extremes. Columbia University Press, Columbia, 1958.

  39. M. Nagao, K. Hiraoka, and Y. Unigame: Sanyo Tech. Rep., 2005, vol. 12, pp. 38–45.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from the National Natural Science Foundation of China (Grant Nos. U1860206, No.51725402), S&T Program of Hebei (Grant No. 20311006D), the Natural Science Foundation of Hebei Province (Grant No. E2021203062), and the High Steel Center (HSC) at North China University of Technology, Yanshan University, and University of Science and Technology Bei**g.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Ren or Lifeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ren, Q. & Zhang, L. Effects of Cerium on Non-metallic Inclusions and Rolling Contact Fatigue Life of a High-Carbon Chromium Bearing Steel. Metall Mater Trans A 54, 167–178 (2023). https://doi.org/10.1007/s11661-022-06856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06856-2

Navigation