Log in

Effect of Solute Nb on Grain Growth in Fe-30 Pct Mn Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Niobium is known to segregate strongly to grain boundaries in steel. The strong interaction of Nb with grain boundaries results in an important reduction of the grain boundary mobility and strong retardation of recrystallization and grain growth. In this study, the effect of Nb on the mobility of grain boundaries in a second-generation Fe-30 pct Mn TWIP steel is investigated. Grain growth kinetics was measured in a series of Nb-containing Fe-30 pct Mn model alloys. An estimate of the grain boundary mobility was obtained for various temperatures and niobium contents. It was found that Nb slows down the mobility of random high-angle grain boundary segments that are not twin related. The effect of solute Nb on grain growth, in the presence of annealing twins, was modeled using Cahn’s theory of solute drag coupled with a recently formulated twin-inhibited grain growth model. The results are shown to be in very good agreement with the experimentally determined growth kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. W. Yang, X. J. Sun, Q. L. Yong, Z. D. Li & X. X. Li: Journal of Iron and Steel Research, International, 2014, vol. 21, pp. 757-64.

    Article  Google Scholar 

  2. J. G. Speer, A. L. Araujo, D. K. Matlock & E. de Moor: Materials Science Forum, 2017, vol. 879, pp. 1834 - 40.

    Article  Google Scholar 

  3. T. N. Baker: Ironmaking & Steelmaking, 2016, vol. 43, pp. 264 -07.

    Article  Google Scholar 

  4. J. Villalobos, A. Del-Pozo, B. Campillo, J. Mayen & S. Serna: Metals, 2018, vol. 8, pp. 351.

    Article  Google Scholar 

  5. M. Maalekian, R. Radis, M. Militzer, A. Moreau & W. Poole: Acta materialia, 2012, vol. 60, pp. 1015-26.

    Article  Google Scholar 

  6. H. L. Yang, G. Xu, L. Wang, Q. Yuan & B. He: Metal Science and Heat Treatment, 2017, vol. 59, pp. 8-13.

    Article  Google Scholar 

  7. L. Zhang & T. Kannengiesser: Materials Science and Engineering: A, 2014, vol. 613, pp. 326-35.

    Article  Google Scholar 

  8. L.C. Zhang, X. L. Wen & Y. Z Liu: Materials Science Forum, 2017, vol. 898, pp. 783-90.

    Article  Google Scholar 

  9. S. Yamamoto, C. Ouchi, T. Osuka: Thermomechanical Process. Microalloyed Austenite, TMS-AIME, New York, 1981, pp. 613–39.

    Google Scholar 

  10. L. Bäcke: ISIJ Int., 2010, vol. 50, pp. 239–47.

    Article  Google Scholar 

  11. J. Takahashi, K. Kawakami, J. I. Hamada & K. Kimura: Acta Materialia, 2016, vol. 107, pp. 415-22.

    Article  Google Scholar 

  12. H.S. Zurob, Y. Brechet, G. Purdy: Acta Mater., 2001, vol. 49, pp. 4183–90.

    Article  Google Scholar 

  13. S. Medina, J. Mancilla: ISIJ Int., 1996, vol. 36, pp. 1070-76.

    Article  Google Scholar 

  14. S.F. Medina: Scr. Metall. Mater. States, 1995, vol. 32, p. 43.

    Article  Google Scholar 

  15. M. Suehiro, Z.-K. Liu, J. Ågren: Acta Mater., 1996, vol. 44, pp. 4241-51.

    Article  Google Scholar 

  16. T. Jia & M. Militzer: Metallurgical and Materials Transactions A, 2015, vol. 46, pp. 614-21.

    Article  Google Scholar 

  17. M. Militzer, J. J. Hoyt, N. Provatas, J. Rottler, C. Sinclair & H. S. Zurob: JOM, 2014, vol. 66, pp. 740-46.

    Article  Google Scholar 

  18. L.M. Fu, H.R. Wang, W. Wang, A.D. Shan: Mater. Sci. Technol., 2011, vol. 44, pp. 996-01.

    Article  Google Scholar 

  19. K. Banerjee, M. Militzer, M. Perez, X. Wang: Metall. Mater. Trans. A, 2010, vol. 41, pp. 3161-72.

    Article  Google Scholar 

  20. A.H. Seikh, M.S. Soliman, A. Almajid, K. Alhajeri, W. Alshalfan: Adv. Mater. Sci. Eng., 2014, vol. 2014, p. 1-8.

    Article  Google Scholar 

  21. Q. Yu, Y.Sun: Mater. Sci. Eng. A, 2006, vol. 420, pp. 34-38.

    Article  Google Scholar 

  22. C. Shang & C. Miao, Advanced Steels, Springer, Berlin, 2011, pp. 341-56.

    Book  Google Scholar 

  23. M. Militzer, Comprehensive Materials Processing, vol. 1, Elsevier, Amsterdam, 2014, pp. 191-216.

    Book  Google Scholar 

  24. K. A. Annan, C. W. Siyasiya & W. E. Stumpf: Journal of the Southern African Institute of Mining and Metallurgy, 2015, vol. 115, pp. 973-80.

    Article  Google Scholar 

  25. Z. Cui, J. Patel & E. J. Palmiere, HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015, Springer, Cham, 2015, pp. 281-87.

    Google Scholar 

  26. P. Lejcek, Grain Boundary Segregation in Metals, vol. 136, Springer, Berlin, 2010, pp. 25-43.

    Book  Google Scholar 

  27. G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed., CRC Press, Boca Raton, 2009, pp. 509-577.

    Book  Google Scholar 

  28. B. C. De Cooman, O. Kwon & K. G. Chin: Materials Science and Technology, 2012, vol. 28, pp. 513-27.

    Article  Google Scholar 

  29. L. Chen, Y. Zhao & X. Qin: Acta Metallurgica Sinica (English Letters), 2013, vol. 26, pp. 1-15.

    Article  Google Scholar 

  30. L. Llanos, B. Pereda & B. Lopez: Metallurgical and Materials Transactions A, 2015, vol. 46, pp. 5248-65.

    Article  Google Scholar 

  31. A. Hamada, A. Khosravifard, D. Porter & L. P. Karjalainen: Materials Science and Engineering: A, 2017, vol. 703, pp. 85-96.

    Article  Google Scholar 

  32. C. Haase, M. Kühbach, L. A. Barrales-Mora, S. L. Wong, F. Roters, D. A. Molodov & G. Gottsstein: Acta Materialia, 2015, vol. 100, pp. 155-68.

    Article  Google Scholar 

  33. L. Llanos, B. Pereda, D. Jorge-Badiola, J. M. Rodriguez-Ibabe, B. López: Mater. Sci. Forum, 2013, vol. 753, pp. 443-48.

    Article  Google Scholar 

  34. M. Bhattacharyya, B. Langelier, G. Purdy, H.S. Zurob: Metallurgical and Materials Transactions A., 2019, vol. 50, pp. 905-14.

    Article  Google Scholar 

  35. M. Bhattacharyya, Y. Brechet, G.R. Purdy, and H.S. Zurob: Met Trans. A (under review).

  36. J.W. Cahn: Acta Metall., 1962, vol. 10, pp. 789–98.

    Article  Google Scholar 

  37. K. Furumai, H. Zurob, A. Phillion: ISIJ Int. (accepted).

  38. F. J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Ltd., Amsterdam, 2012, pp. 159-60.

    Google Scholar 

  39. M.K Rehman, H.S. Zurob: Metall. Mater. Trans. A, 2013, vol. 44, pp. 1862-71.

    Article  Google Scholar 

  40. N. Maruyama, G.D.W. Smith, A. Cerezo: Mater. Sci. Eng. A, 2003, vol. 353, pp. 126–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumanti Bhattacharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 22, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, M., Langelier, B. & Zurob, H.S. Effect of Solute Nb on Grain Growth in Fe-30 Pct Mn Steel. Metall Mater Trans A 50, 3674–3682 (2019). https://doi.org/10.1007/s11661-019-05273-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05273-2

Navigation